DOI QR코드

DOI QR Code

pH-Stat Digestion Model에서 카카오 추출물이 Oil과 Emulsion의 가수분해에 미치는 영향

Effect of Cacao Extract on Hydrolysis of Oil vs. Emulsion in pH-Stat Digestion Model

  • Lee, Ji-Hyun (Department of Food Science and Technology, Chungnam National University) ;
  • Shin, Jung-Ah (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, Chungnam National University)
  • 투고 : 2015.11.23
  • 심사 : 2016.02.12
  • 발행 : 2016.04.30

초록

페놀화합물의 함량이 높다고 알려진 카카오(powder)로부터 카카오 추출물(CE)을 획득한 후, CE가 pancreatic lipase의 활성에 미치는 영향과 CE를 함유한 emulsion의 aging에 의한 가수분해율 변화를 살펴보기 위하여 두 가지 형태의 기질을 사용한 pH-stat digestion model을 이용하였다. Type I 의 경우 소화액에 CE와 콩기름을 첨가하여 emulsion을 제조하였으며 aging time(0, 5, 24시간)에 따른 가수분해 변화를 살펴보았다. CE를 첨가하였을 때의 가수분해율은 CE를 첨가하지 않았을 때와 큰 차이를 보이지 않아 CE가 pancreatic lipase 활성에 영향을 주지 않았다고 판단된다. 그러나 aging time이 지남에 따라 CE를 첨가하였을 때와 CE를 첨가하지 않았을 때의 가수분해율 모두 감소하였다. 이는 CE의 영향보다는 aging time이 길어짐에 따라 emulsion의 안정도가 낮아져 지방구 크기가 증가하여 가수분해율이 모두 감소한 것으로 생각되고, 따라서 이 모델에서는 CE에 의한 가수분해 저하가 크지 않았다. 한편 type II의 경우 먼저 콩기름과 CE, Tween 20를 혼합하고 고압균질기를 사용하여 micro-emulsion을 제조한 후, 이를 기질로 하여 aging time(0, 2, 4, 7, 18, 43일)에 따른 가수분해율 변화를 살펴보았다. 그 결과 aging time에 따라 CE를 첨가하지 않은 control과 CE를 첨가한 CE-emulsion의 가수분해율이 감소하였는데, 특히 control보다 CE-emulsion이 더 많이 감소하여 43일에는 control의 ${\Phi}$ max가 92.13%(0일, 96.53%)였으나 CE-emulsion은 77.69%(0일, 97.91%)를 보이면서 CE-emulsion의 가수분해 반응이 control에 비해 낮았다. 다른 kinetic parameter(k value, $t_{1/2}$ 등)에서도 이와 유사한 경향을 나타냈다.

Effect of polyphenols-rich cacao extract (CE) on lipid hydrolysis by pancreatic lipase was investigated by pH-stat digestion. Two types of substrate (oil vs. emulsion) prepared from soybean oil and CE were studied as types I and II. In the case of type I, addition of CE did not show retardation of lipid hydrolysis, showing that pancreatic lipase was not inhibited. Final digestibility rate (${\Phi}$ max, %) and initial rate (mM/s) of the 24-h aged control (52.31%, 0.03 mM/s) were similar to those of the CE-added sample (58.88%, 0.03 mM/s). However, in the case of typeII, the hydrolysis rates of the control and CE-added emulsion showed distinct differences as aging time increased to 43 days, showing lower digestion in the CE-added emulsion than the control. After 43 days, ${\Phi}$ max values of the control and CE-added emulsion were 92.13% and 77.68%, respectively.

키워드

참고문헌

  1. Lee YS, Cho Y, Shin MJ. 2015. Dietary very long chain saturated fatty acids and metabolic factors: findings from the Korea National Health and Nutrition Examination survey 2013. Clin Nutr Res 4: 182-189. https://doi.org/10.7762/cnr.2015.4.3.182
  2. Himes CL. 2013. Obesity, disease, and functional limitation in later life. Demography 37: 73-82.
  3. Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y. 2005. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 53: 4593-4598. https://doi.org/10.1021/jf047814+
  4. Birari RB, Bhutani KK. 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 12: 879-889. https://doi.org/10.1016/j.drudis.2007.07.024
  5. Tzoumaki MV, Moschakis T, Scholten E, Biliaderis CG. 2013. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food Funct 4: 121-129. https://doi.org/10.1039/C2FO30129F
  6. Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, Salducci J, Portugal H, Jaussan V, Lairon D. 1999. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70: 1096-1106. https://doi.org/10.1093/ajcn/70.6.1096
  7. Almoosawi S, McDougall GJ, Fyfe L, Al-Dujaili EAS. 2010. Investigating the inhibitory activity of green coffee and cacao bean extracts on pancreatic lipase. Nutr Bull 35: 207-212. https://doi.org/10.1111/j.1467-3010.2010.01841.x
  8. McDougall GJ, Kulkarni NN, Stewart D. 2009. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115: 193-199. https://doi.org/10.1016/j.foodchem.2008.11.093
  9. Jalil AM, Ismail A. 2008. Polyphenols in cocoa and cocoa products: is there a link between antioxidant properties and health?. Molecules 13: 2190-2219. https://doi.org/10.3390/molecules13092190
  10. Gu Y, Hurst WJ, Stuart DA, Lambert JD. 2011. Inhibition of key digestive enzymes by cocoa extracts and procyanidins. J Agric Food Chem 59: 5305-5311. https://doi.org/10.1021/jf200180n
  11. Thompson RS, Jacques D, Haslam E, Tanner RJN. 1972. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant procyanidins. J Chem Soc Perkin Trans 1: 1387-1399.
  12. Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, Hatano T, Yoshida T. 2000. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem 64: 2581-2587. https://doi.org/10.1271/bbb.64.2581
  13. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Slips AJAM. 2005. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43: 31-40. https://doi.org/10.1016/j.fct.2004.08.007
  14. Li Y, McClements DJ. 2010. New mathematical model for interpreting pH-stat digestion profiles: impact of lipid droplet characteristics on in vitro digestibility. J Agric Food Chem 58: 8085-8092. https://doi.org/10.1021/jf101325m
  15. Wollgast J. 2004. The contents and effects of polyphenols in chocolate: qualitative and quantitative analyses of polyphenols in chocolate and chocolate raw products as well as evaluation of potential implications of chocolate consumption in human health. PhD Dissertation. University of Giessen, Giessen, Germany.
  16. Reddy SR, Fogler HS. 1980. Emulsion stability: determination from turbidity. J Colloid Interface Sci 79: 101-104.
  17. Ivanov IB, Danov KD, Kralchevsky PA. 1999. Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf A 152: 161-182. https://doi.org/10.1016/S0927-7757(98)00620-7

피인용 문헌

  1. In Vitro and In Vivo Digestibility of Soybean, Fish, and Microalgal Oils, and Their Influences on Fatty Acid Distribution in Tissue Lipid of Mice vol.25, pp.22, 2016, https://doi.org/10.3390/molecules25225357