DOI QR코드

DOI QR Code

PbWO4 : Gd 단결정 내의 Gd3+ 상자성 이온에 대한 바닥 상태 에너지

Ground State Energy of Gd3+ Paramagnetic Ion in PbWO4 : Gd Single Crystal

  • 염태호 (청주대학교 레이저광정보공학과)
  • Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
  • 투고 : 2016.03.20
  • 심사 : 2016.04.06
  • 발행 : 2016.04.30

초록

분광학적 분리인자 $g_{ij}$와 영자기장 갈라지기 상수 값 $B_k^q$ 값을 유효 스핀 하밀토니안에 사용하여, $PbWO_4$ : Gd 단결정 내의 정방정계 대칭성 자리에 위치하고 있는 $Gd^{3+}$ 상자성 불순물 이온(유효전자 스핀 S = 7/2)의 바닥상태에서의 에너지 준위를 계산하였다. 외부 자기장이 영일 경우의 $Gd^{3+}$ 이온의 영자기장 갈라지기 값은 $PbWO_4$ : Gd 단결정의 방향에 관계없이 모두 같았고, 이때 ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > 전이 사이에서 계산된 에너지 간격은 각각, 6.9574 GHz, 6.9219 GHz, 15.8704 GHz이다. 결정학적 축에 대하여 외부 자기장을 가하는 방향에 따라서 서로 다른 에너지 준위 값을 나타내었다. 이중 외부자기장이 결정학적 주축 a- 및 c-축에 나란할 경우에 에너지 준위를 계산하여 논의하였다.

Ground state energy levels of $Gd^{3+}$ ion (effective spin S = 7/2) in $PbWO_4$ single crystal doped with $Gd^{3+}$ paramagnetic impurity at tetragonal symmetry are calculated with spectroscopic splitting parameters and zero field splitting parameters using by effective spin Hamiltonian. It turns out that the zero field splitting energies of $Gd^{3+}$ ion were the same regardless of the directions of $PbWO_4$ : Gd single crystal. The calculated energy differences for ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, and ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > transitions were 6.9574 GHz, 6.9219 GHz, and 15.8704 GHz, respectively when the applied magnetic field is zero. The calculated energy level diagrams were different for different directions of applied magnetic field. For B // a- and c-axis, the energy level diagrams are calculated and discussed.

키워드

참고문헌

  1. M. Kobayashi, M. Ishii, Y. Usuki, and H. Yahagi, Nucl. Instr. and Meth. A 333, 429 (1993). https://doi.org/10.1016/0168-9002(93)91187-R
  2. P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M. V. Korzhik, O. V. Missevitch, V. B. Pavlenko, A. A. Fedorov, A. N. Annenkov, V. L. Kostylev, and V. D. Ligun, Nucl. Instr. and Meth. A 365, 291 (1995). https://doi.org/10.1016/0168-9002(95)00589-7
  3. K. Nitsch, M. Nikl, S. Ganschow, P. Reiche, and R. Uecker, J. Crystal Growth 165, 163 (1996). https://doi.org/10.1016/0022-0248(96)00167-4
  4. R. Y. Zhu, D. A. Ma, H. B. Newman, C. L. Woody, J. A. Kirstead, S. P. Stoll, and P. W. Levy, Nucl. Instrum. Methods Phys. Res. A 376, 319 (1996). https://doi.org/10.1016/0168-9002(96)00286-0
  5. M. Nikl, P. Bohacek, E. Mihokova, N. Solovieva, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, M. Kobayashi, M. Ishii, Y. Usuki, and D. Zimmerman, J. Crystal Growth 229, 312 (2001). https://doi.org/10.1016/S0022-0248(01)01170-8
  6. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Optics Communications 183, 277 (2000). https://doi.org/10.1016/S0030-4018(00)00842-7
  7. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, Optics Commun. 194, 401 (2001). https://doi.org/10.1016/S0030-4018(01)01148-8
  8. E. Auffray, I. Dafinei, P. Lecoq, and M. Schneegans, Radiat. Eff. 135, 343 (1995). https://doi.org/10.1080/10420159508229864
  9. S. Baccaro, P. Bohacek, B. Borgia, A. Cecilia, I. Dafinei, M. Diemoz, M. Ishii, O. Jarolimek, M. Kobayashi, M. Martini, M. Montecchi, M. Nikl, K. Nitsch, Y. Usuki, and A. Vedda, Phys. Stat. Sol. (a) 160, R5 (1997). https://doi.org/10.1002/1521-396X(199704)160:2<R5::AID-PSSA99995>3.0.CO;2-L
  10. E. Auffray, P. Lecoq, M. Korzhik, A. Annenkov, O. Jarolimek, M. Nikl, S. Baccaro, A. Cecilia, M. Diemoz, and I. Dafinei, Nucl. Instr. and Meth. A 402, 75 (1998). https://doi.org/10.1016/S0168-9002(97)01088-7
  11. M. Nikl, P. Bohacek, E. Mihokova, M. Martini, F. Meinardi, A. Vedda, P. Fabeni, G. P. Pazzi, M. Kobayashi, M. Ishii, and Y. Usuki, J. Appl. Phys. 87, 4243 (2000). https://doi.org/10.1063/1.373060
  12. M. Nikl, P. Bohacek, E. Mihokova, S. Baccaro, A. Vedda, M. Diemoz, E. Longo, M. Kobayashi, E. Auffray, and P. Lecoq, Nucl. Phys. B (Proc. Suppl.) 78, 471 (1999). https://doi.org/10.1016/S0920-5632(99)00589-7
  13. C. Yang, Y. Guo, P. Shi, and G. Chen, J. Crystal Growth 226, 79 (2001). https://doi.org/10.1016/S0022-0248(01)01031-4
  14. S. Baccaro, P. Bohacek, B. Borgia, A. Cecilia, I. Dafinei, M. Diemoz, M. Ishii, O. Jarolimek, M. Kobayashi, M. Martini, M. Montecchi, M. Nikl, K. Nitsch, Y. Usuki, and A. Vedda, Phys. Stat. Sol. (a) 160, R5 (1997). https://doi.org/10.1002/1521-396X(199704)160:2<R5::AID-PSSA99995>3.0.CO;2-L
  15. M. Kobayashi, Y. Usuki, M. Ishii, T. Yazawa, K. Hara, M. Tanaka, M. Nikl, and K. Nitsch, Nucl. Instr. and Meth. A 399, 261 (1997). https://doi.org/10.1016/S0168-9002(97)00929-7
  16. M. Kobayashi, Y. Usuki, M. Ishii, T. Yazawa, K. Hara, M. Tanaka, M. Nikl, S. Baccaro, A. Cecilia, M. Diemoz, and I. Dafinei, Nucl. Instr. and Meth. A 404, 149 (1998). https://doi.org/10.1016/S0168-9002(97)01137-6
  17. M. Kobayashi, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Dakano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, and M. Diemoz, Nucl. Instr. and Meth. A 434, 412 (1999). https://doi.org/10.1016/S0168-9002(99)00550-1
  18. M. Nikl, P. Bohacek, K. Nitsch, E. Mihokova, M. Martini, A. Vedda, S. Crocci, G. Pazzi, P. Fabeni, S. Baccaro, B. Borgia, I. Dafinei, M. Diemoz, G. Organtini, E. Auffray, P. Lecoq, M. Kobayashi, M. Ishii, and Y. Usuki, Appl. Phys. Lett. 71, 3755 (1997). https://doi.org/10.1063/1.120409
  19. Z. Qi, C. Shi, D. Zhou, H. Tang, T. Liu, and T. Hu, Physica B: Condensed Matter 307, 45 (2001). https://doi.org/10.1016/S0921-4526(01)00973-5
  20. J. Rosa, H. R. Asatryan, and M. Nikl, Phys. Stat. Sol. (a) 158, 573 (1996). https://doi.org/10.1002/pssa.2211580226
  21. T. H. Yeom, S. H. Lee, I. G. Kim, S. H. Choh, T. H. Kim, and J. H. Ro, J. Appl. Phys. 87, 1424 (2001).
  22. T. H. Yeom, S. H. Lee, S. H. Choh, T. J. Han, T. H. Kim, and J. H. Ro, J. Appl. Phys. 94, 3796 (2003). https://doi.org/10.1063/1.1599048
  23. A. Hofstaetter, M. V. Korzhik, V. V. Laguta, B. K. Meyer, V. Nagirnyi, and R. Novotny, Radia. Meas. 33, 533 (2001). https://doi.org/10.1016/S1350-4487(01)00053-1
  24. P. W. Richter, G. J. Kruger, and C. W. F. T. Pistorios, Acta Crystallogr. B32, 928 (1976).
  25. T. Fujita, I. Kawada, and K. Kato, Acta Crystallogr. B33, 162 (1997).
  26. L. L. Y. Chang, J. Am Ceram. Soc. 54, 357 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12316.x
  27. R. Shaw and G. F. Claringbull, Am. Mineral. 40, 933 (1955).
  28. L. Z. Leciejewitz, Z. Kristallogr. 121, 158 (1965). https://doi.org/10.1524/zkri.1965.121.2-4.158
  29. S. K. Misra and C. Rudowicz, Phys. Status Solidi B 147, 677 (1988). https://doi.org/10.1002/pssb.2221470226
  30. C. Rudowicz, Magn. Reson. Rev. 13, 1 (1987); 13, E355 (1988).
  31. D. G. McGavin, J. Mater. Res. 74, 19 (1987).
  32. S. Altschuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974), Chap. 3.