DOI QR코드

DOI QR Code

노말헥산올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측

Measurement and Prediction of Autoignition Temperature of n-Hexanol+p-Xylene Mixture

  • 하동명 (세명대학교 보건안전공학과)
  • Ha, Dong-Myeong (Department of Occupational Health and Safety Engineering, Semyung University)
  • 투고 : 2016.02.10
  • 심사 : 2016.03.18
  • 발행 : 2016.03.31

초록

최소자연발화온도는 가연성물질이 주위의 열에 의해 스스로 발화하는 최저온도이다. 최소자연발화온도는 유기혼합물중 가연성 액체혼합물의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-hexanol+p-xylene 계의 최소자연발화온도를 측정하였다. 2성분계를 구성하는 순수물질인 n-hexanol과 p-xylene의 최소자연발화온도는 각 각 $275^{\circ}C$, $557^{\circ}C$로 측정되었다. 그리고 측정된 n-hexanol+p-xylene 계의 최소자연발화온도는 제시된 식에 의한 예측값과 적은 평균절대오차에서 일치하였다.

The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-hexanol+p-xylene system by using ASTM E659 apparatus. The AITs of n-hexanol and p-xylene system which constituted binary system were $275^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-hexanol+p-xylene system system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

키워드

참고문헌

  1. Babrauskas, V. : "Ignition Handbook", Fire Science Publishers, SFPE, 2003.
  2. Ha, D.M. : "The Measurement and Prediction of Combustible Properties of Dimethylaceramide (DMAC)" Korean Chem. Eng. Res., Vol. 53, No. 5, pp. 553-556, (2015) https://doi.org/10.9713/kcer.2015.53.5.553
  3. Cullis. C.F. and Foster, C.D. : "Studies of the Spontaneous Ignition in the Air of Binary Hydrocarbon Mixtures", Combustion and Flame, Vol. 23, pp. 347-356, (1974) https://doi.org/10.1016/0010-2180(74)90117-5
  4. Ha, D.M. "Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture", Journal of the Korean Institute of Gas, Vol. 17, No. 2, pp. 21-27, (2013) https://doi.org/10.7842/kigas.2013.17.2.21
  5. Ha, D.M. : "A Study on the Reliability of the Combustible Properties for Arcylic acid", J. Energy Engineering, Vol. 24, No. 3, pp. 20-26, (2015)
  6. Goldfrab, J. and Zinoviev, A. : "A Study of Delay Spontaneous Insulation Fires", Physics Letter, A 311, pp. 491-500, (2003) https://doi.org/10.1016/S0375-9601(03)00506-1
  7. Box. G.E.P. and N.R. Draper : "Empirical Model- Building and Response Surface", John Wiley and Sons, Inc., (1987)
  8. Hilado, C.J. and Clark, S.W. : "Autoignition Temperature of Organic Chemicals", Chemical Engineering, Vol. 4, pp.75-80, (1972)
  9. Semenov, N.N. : "Some Problems in Chemical Kinetics and Reactivity, Vol. 2", Princeton University Press, Princeton, N.J, (1959)
  10. Lenga, R.E. and Votoupal, K.L. : "The Sigma Aldrich Library of Regulatory and Safety Data, Volume I- ", Sigma Chemical Company and Aldrich Chemical Company Inc., (1993)
  11. Kanury, A.M. : "SFPE Handbook of Fire Protection Engineering : Ignition of Liquid Fuels", 2nd ed., SFPE, (1995)
  12. NFPA : "Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids", NFPA 325M, NFPA, (1991)
  13. Jackson, J.L. : "Spontaneous Ignition Temperature - Commercial Fluids and Pure Hydrocarbons-", Industrial and Engineering Chemistry, Vol. 43, No. 12, pp.2869-2870, (1951) https://doi.org/10.1021/ie50504a058