DOI QR코드

DOI QR Code

Li-ion 배터리 충/방전 시스템의 안정적 운영에 관한 연구

A Study on Stable Operation of Li-ion Battery Charging/Discharging System

  • 여성대 (서울과학기술대학교 NID융합기술대학원) ;
  • 한철규 ;
  • 조태일 (서울과학기술대학교 NID융합기술대학원) ;
  • 이경량 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성권 (서울과학기술대학교 NID융합기술대학원)
  • 투고 : 2016.03.10
  • 심사 : 2016.04.24
  • 발행 : 2016.04.28

초록

DC ${\mu}$-Grid 기반의 충/방전 시스템에서 배터리의 동작 변환 시, 망 전압의 fluctuation이 발생하게 되며, 과다한 fluctuation은 충/방전 시스템의 손상 및 고장을 일으킬 수 있다. 따라서 본 논문에서는 DC ${\mu}$-Grid 기반의 충/방전 시스템에서 fluctuation 완화용 커패시터의 적용 및 설계 포인트에 대하여 연구하였다. 컴퓨터 시뮬레이션 결과, 3개의 충전 배터리 set와 5개의 방전 배터리 set의 조건으로 운영되는 DC ${\mu}$-Grid 기반 충/방전 시스템에서 600V/35mF의 초기 값을 갖는 fluctuation 완화용 커패시터를 적용하였을 때 충/방전에 의한 fluctuation을 약 66.3% 감소시킬 수 있었으며, 추가적으로 초기 망 전압 안정화 시 발생하는 fluctuation 또한 약 73% 감소시킬 수 있었다.

When the operation of battery is converted at charging and discharging system based on a DC micro grid, the voltage is fluctuated. And excessive voltage fluctuation could cause damage or failure of charging and discharging equipment. Therefore, in this paper, we studied the operating schedule of the charging and discharging system based on the DC micro grid and a design point of the capacitor which was able to reduce the voltage fluctuation. A result of computer simulation showed that when a fluctuation-reducing capacitor which had an initial value of 600V/35mF was applied at the charging and discharging system based on a DC micro grid which was operated with three charging battery sets and five discharging battery sets, voltage fluctuation by charging and discharging operation was reduced by about 63.3%. Furthermore, voltage fluctuation which occurred when initial network voltage was stabilized was reduced by about 73%.

키워드

참고문헌

  1. C. Rirkl, D. Frost, A. Mizeray, R. Richardson, and D. Howey, "Modular converter system for low-cost off-grid energy storage using second life Li-ion batteries," IEEE Global Humanitarian Technology Conf. 2014, San Jose, USA, Nov. 2014.
  2. S. Kim, K. Lee, S. Yeo, S. Hong, and Y. Park, "Implementation of Successive Approximate Register typed A/D Converter for a Monitored Battery Voltage Conversion," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 2, Apr. 2011, pp. 256-261.
  3. S. You, J. Jung, K. Cheong, and J. Go, "Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles," The Trans. of the Korean Society of Mechanical Engineers-B, vol. 35, no. 6, June 2011, pp. 649-656. https://doi.org/10.3795/KSME-B.2011.35.6.649
  4. J. Lee, W. Kim, J. Kim, and B. Han, "Development of Hardware Simulator for Operation Analysis of DC Microgrid," The Trans. of Korean Institute of Power Electronics, vol. 16, no. 6, Dec. 2011, pp. 577-586. https://doi.org/10.6113/TKPE.2011.16.6.577
  5. M. Cho, D. Nah, S. Kil, and S. Kim, "Li-Ion Traction Batteries for All-Electric Vehicle," J. of Energy Engineering, vol. 20, no. 2, 2011, pp. 109-122. https://doi.org/10.5855/ENERGY.2011.20.2.109
  6. Y. Jung, "A Study on Generalized Output Capacitor Ripple Current Equation of Interleaved Boost Converter," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1429-1435. https://doi.org/10.13067/JKIECS.2012.7.6.1429
  7. H. Vaidyanathan, W. Helly, and G. Rao, "Heat dissipation in a lithium ion cell," J. of Power Sources, vol. 93, issue 1-2, Feb. 2001, pp. 112-122. https://doi.org/10.1016/S0378-7753(00)00550-4
  8. J. Nam, J. Choi, S. Kim, H. Hwang, and J. Kim, "A Study on SOC Algorithm and Design of Battery ECU for Hybrid Electric Vehicle," Trans. of the Korea Institute of Power Electronics, vol. 9, no. 4, 2004, pp. 319-325.
  9. S. Yeo, J. Kim, K. Lee, C. Han, T. Ryu, K. Kim, and S. Kim, "A Study on Energy Efficiency of Battery Charge/Discharge System based on DC ${\mu}$-Grid," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 12, 2015, pp. 1337-1343. https://doi.org/10.13067/JKIECS.2015.10.12.1337