DOI QR코드

DOI QR Code

Development of Simple and Rapid Radioactivity Analysis for Thorium Series in the Products Containing Naturally Occurring Radioactive Materials (NORM)

천연방사성물질(NORM)을 함유한 가공제품 내 토륨계열 방사능 평가를 위한 간단/신속 분석법 개발

  • Received : 2015.11.21
  • Accepted : 2016.03.07
  • Published : 2016.03.31

Abstract

Background: It is necessary to analyze radioactivity of naturally occurring radioactive materials (NORM) in products to ensure radiological safety required by Natural Radiation Safety Management Act. The pretreatments for the existing analysis methods require high technology and time. Such destructive pretreatments including grinding and dissolution of samples make impossible to reuse products. We developed a rapid and simple procedure of radioactivity analysis for thorium series in the products containing NORM. Materials and Methods: The developed method requires non-destructive or minimized pretreatment. Radioactivity of the product without pretreatment is initially measured using gamma spectroscopy and then the measured radioactivity is adjusted by considering material composition, mass density, and geometrical shape of the product. The radioactivity adjustment can be made using scaling factors, which is derived by radiation transport Monte Carlo simulation. Necklace, bracelet, male health care product, and tile for health mat were selected as representative products for this study. The products are commonly used by the public and directly contacted with human body and thus resulting in high radiation exposure to the user. Results and Discussion: The scaling factors were derived using MCNPX code and the values ranged from 0.31 to 0.47. If radioactivity of the products is measured without pretreatment, the thorium series may be overestimated by up to 2.8 times. If scaling factors are applied, the difference in radioactivity estimates are reduced to 3-24%. Conclusion : The developed procedure in this study can be used for other products with various materials and shapes and thus ensuring radiological safety.

연구배경: 생활주변방사선 안전관리법에 의한 가공제품의 방사선학적 안전성 평가를 위해서는 가공제품에 함유된 천연방사성핵종의 정량적 평가가 필요하다. 기존 분석법을 위한 파괴적 전처리는 높은 수준의 기술과 많은 시간이 소요되고, 측정 후 가공제품의 재사용을 불가능하게 하는 단점이 있다. 본 연구에서는 가공제품에 함유된 천연방사성핵종인 토륨계열의 방사능을 평가하기 위해 전처리 과정이 생략되거나 최소화된 방법인 간단/신속 분석법을 개발하였다. 재료 및 방법: 개발된 분석법은 감마분광분석 시스템을 이용하여 전처리 없이 가공제품의 방사능을 간단하고 신속하게 측정하고, 시료의 구성물질, 밀도, 기하학적 형태에 대한 보정을 통하여 방사능을 정확하게 평가할 수 있는 방법이다. 상기 요소에 대한 보정을 위해 변환상수 개념을 도입하였으며, 방사선수송 전산모사를 통해 변환상수를 도출하였다. 본 연구의 대상으로는 일반인이 흔하게 사용하고, 인체에 착용하거나 인체 접촉이 많은 가공제품, 즉 일반인에게 상대적으로 높은 피폭방사선량을 초래할 수 있는 대표적인 가공제품이 선정되었다. 본 연구에서 선정된 가공제품은 건강목걸이, 건강팔찌, 남성용 건강보조기구, 매트 형태의 가공제품에 장착된 타일이었다. 결과 및 고찰: 상기 제품에 대한 변환상수를 Monte Carlo N-Particle eXtended (MCNPX)를 이용하여 도출하였으며, 도출된 변환상수는 0.31-0.47의 범위에 분포하였다. 전처리 없이 가공제품 원형을 그대로 측정한 단순 측정 분석법의 경우 가공제품에 함유된 토륨계열의 방사능은 실제보다 약 2.8배까지 과대평가 되었다. 본 연구에서 개발한 간단/신속 분석법을 사용하는 경우에는 전처리를 통한 정밀분석법과 비교하여 그 차이가 3-24% 정도로 크게 줄어들었다. 결론: 본 연구에서 개발한 분석법은 향후 추가적인 가공제품의 재질 및 형태에 대한 변환상수의 개발을 통해 다양한 가공제품의 방사선학적 안정성 평가에 활용될 수 있을 것이다.

Keywords

References

  1. Malling DC, Fiorucci S, Pangilinan M, Chapman JJ, Faham CH, Verbus JR. Dark matter search backgrounds from primordial radionuclide chain disequilibrium. Astroparticle Physics 2013;arXiv:1305.5183.
  2. Guogang J, Jing J. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J. Environ. Radioact. 2012;106:98-119. https://doi.org/10.1016/j.jenvrad.2011.12.003
  3. Korob RO, Nuno GAB. A simple method for the absolute determination of uranium enrichment by high-resolution ${\gamma}$ spectrometry. Appl. Radiat. Isot. 2006;64:525-531. https://doi.org/10.1016/j.apradiso.2005.10.003
  4. International Atomic Energy Agency. Extent of environmental contamination by NORM and technological option for mitigation. IAEA technical report series No 419. Vienna, Austria. 2003;55-86.
  5. International Atomic Energy Agency. Radiation protection and NORM residue management in the zircon and zirconia industries. IAEA safety report series No 51. Vienna, Austria. 2007;23-31.
  6. International Atomic Energy Agency. Radiation protection and NORM residue management in the production of rare earths from thorium counting minerals. IAEA safety reports series No 68. Vienna, Austria. 2011;8-22.
  7. Tzortzis M, Tsertos H. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J. Environ. Radioact. 2004;77:325-338. https://doi.org/10.1016/j.jenvrad.2004.03.014
  8. Al-Sulaiti H, et al. Determination of the natural radioactivity level in north west of Dukhan, Qatar using high-resolution gamma-ray spectrometry. Appl. Radiat. Isot. 2012;70:1344-1350. https://doi.org/10.1016/j.apradiso.2011.11.015
  9. Tsabaris C, Evangeliou N, Fillis-Tsirakis E, Sotiropoulou M, Patiris DL, Florou H. Distribution of natural radioactivity in sediment cores from Amvrakikos gulf (Western GREECE) as a part of IAEA' campaign in the Adriatic and Ionian seas. Radiat. Prot. Dosim. 2012;150(4):474-487. https://doi.org/10.1093/rpd/ncr436
  10. International Atomic Energy Agency. In direct methods for assessing intakes of radionuclides causing occupational exposure. IAEA safety reports series No 18. Vienna, Austria. 2000;49-55.
  11. Garcia-Talavera M, Laedermann JP, Decombaz M, Daza MJ, Quintana B. Coincidence summing corrections for the natural decay series in gamma-ray spectrometry. J. Radiat. Isot. 2001;54:769-777. https://doi.org/10.1016/S0969-8043(00)00318-3
  12. Laborie JM, Petit GL, Abt D, Girard AM. Monte carlo calculation of the efficiency calibration curve and coincidence-summing corrections in low-level gamma ray spectrometry using well-type HPGe detectors. Appl. Radiat. Isot. 2000;53:57-62. https://doi.org/10.1016/S0969-8043(00)00114-7
  13. Ozben CS, Emirhan EM. A hybrid method to determine efficiency curve of HPGe detectors. Appl. Radiat. Isot. 2009;67:1110-1113. https://doi.org/10.1016/j.apradiso.2009.01.085
  14. Pelowitz DB, MCNPX User's Manual, Version 2.7.0. Los Alamos National Laboratory Report LA-CP-11-00438. Los Alamos, NM. 2011;5.106-5.171.
  15. McConn RJ, Gesh CJ, Pagh RT, Rucker RA, Wiliams RG. Compendium of material composition data for radiation transport modeling. PIET-43741-TM-963. Pacific Northwest National Laboratory, Richland, WA. 2011;252-264.
  16. Jin Y, Gardner RP, Verghese K. A semi-emprical model for the gamma-ray response function of germanium detectors based on fundamental interaction mechanisms. Nucl. Instr. and Meth. 1986;A242:416-426.