References
- Adams, B., A. Chan, H. Callahan, C. Siwak, D. Tapp, C. Ikeda- Douglas, P. Atkinson, E. Head, C. W. Cotman, and N. W. Milgram. 2000. Use of a delayed non-matching to position task to model age-dependent cognitive decline in the dog. Behav. Brain Res. 108:47-56. https://doi.org/10.1016/S0166-4328(99)00132-1
- Chang, S. H., I. S. Jung, G. Y. Han, N. H. Kim, H. J. Kim, and C. W. Kim. 2013. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease. Biochem. Biophys. Res. Commun. 430:670-675. https://doi.org/10.1016/j.bbrc.2012.11.093
- Chatterjee, P., M. Bhattacharyya, S. Bandyopadhyay, and D. Roy. 2014. Studying the system-level involvement of microRNAs in Parkinson's disease. PLoS One 9:e93751. https://doi.org/10.1371/journal.pone.0093751
- Cho, H. J., G. Liu, S. M. Jin, L. Parisiadou, C. Xie, J. Yu, L. Sun, B. Ma, J. Ding, R. Vancraenenbroeck, E. Lobbestael, V. Baekelandt, J. M. Taymans, P. He, T. C. Troncoso, Y. Shen, and H. Cai. 2013. MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein. Hum. Mol. Genet. 22:608-620. https://doi.org/10.1093/hmg/dds470
- Cummings, J. L., H. V. Vinters, G. M. Cole, and Z. S. Khachaturian. 1998. Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51:S2-17; discussion S65-7.
- Groenen, M. A., A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi, M. F. Rothschild, C. Rogel-Gaillard, C. Park, D. Milan, and H. J. Megens et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393-398. https://doi.org/10.1038/nature11622
- Head, E. 2007. Combining an antioxidant-fortified diet with behavioral enrichment leads to cognitive improvement and reduced brain pathology in aging canines: strategies for healthy aging. Ann. NY Acad. Sci. 1114:398-406. https://doi.org/10.1196/annals.1396.004
- Head, E. and R. Torp. 2002. Insights into Abeta and presenilin from a canine model of human brain aging. Neurobiol. Dis. 9:1-10. https://doi.org/10.1006/nbdi.2002.0476
- Johnstone, E. M., M. O. Chaney, F. H. Norris, R. Pascual, and S. P. Little. 1991. Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Mol. Brain Res. 10:299-305. https://doi.org/10.1016/0169-328X(91)90088-F
- Kragh, P. M., A. L. Nielsen, J. Li, Y. Du, L. Lin, M. Schmidt, I. B. Bogh, I. E. Holm, J. E. Jakobsen, M. G. Johansen, S. Purup, L. Bolund, G. Vajta, and A. L. Jorgensen. 2009. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res. 18:545-558. https://doi.org/10.1007/s11248-009-9245-4
- Li, J., Z. Wu, F. Cheng, W. Li, G. Liu, and Y. Tang. 2014. Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology. Sci. Rep. 4:5576.
- Lukiw, W. J. 2007. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18:297-300. https://doi.org/10.1097/WNR.0b013e3280148e8b
- Maciotta, S., M. Meregalli, and Y. Torrente. 2013. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci. 7:265.
- Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1:120-130. https://doi.org/10.1038/35040009
- Mouradian, M. M. 2012. MicroRNAs in Parkinson's disease. Neurobiol. Dis. 46:279-284. https://doi.org/10.1016/j.nbd.2011.12.046
- Muller, M., H. B. Kuiperij, J. A. Claassen, B. Kusters, and M. M. Verbeek. 2014. MicroRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol. Aging 35:152-158. https://doi.org/10.1016/j.neurobiolaging.2013.07.005
- Peterson, K. J., M. R. Dietrich, and M. A. McPeek. 2009. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31:736-747. https://doi.org/10.1002/bies.200900033
- Ramanan, V. K. and A. J. Saykin. 2013. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. Am. J. Neurodegener. Dis. 2:145-175.
- Sarasa, M. and P. Pesini. 2009. Natural non-trasgenic animal models for research in Alzheimer's disease. Curr. Alzheimer Res. 6:171-178. https://doi.org/10.2174/156720509787602834
- Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498-2504. https://doi.org/10.1101/gr.1239303
- Shtilbans, A. and C. Henchcliffe. 2012. Biomarkers in Parkinson's disease: An update. Curr. Opin Neurol. 25:460-465. https://doi.org/10.1097/WCO.0b013e3283550c0d
- Studzinski, C. M., L. A. Christie, J. A. Araujo, W. M. Burnham, E. Head, C. W. Cotman, and N. W. Milgram. 2006. Visuospatial function in the beagle dog: An early marker of cognitive decline in a model of human aging and dementia. Neurobiol. Learn. Mem. 86:197-204. https://doi.org/10.1016/j.nlm.2006.02.005
- Sutherland, G. T., N. A. Matigian, A. M. Chalk, M. J. Anderson, P. A. Silburn, A. Mackay-Sim, C. A. Wells, and G. D. Mellick. 2009. A cross-study transcriptional analysis of Parkinson's disease. PLoS One 4:e4955. https://doi.org/10.1371/journal.pone.0004955
- Tan, C. L., J. L. Plotkin, M. T. Veno, M. von Schimmelmann, P. Feinberg, S. Mann, A. Handler, J. Kjems, D. J. Surmeier, D. O'Carroll, P. Greengard, and A. Schaefer. 2013. MicroRNA- 128 governs neuronal excitability and motor behavior in mice. Science 342:1254-1258. https://doi.org/10.1126/science.1244193
- Tiribuzi, R., L. Crispoltoni, S. Porcellati, M. Di Lullo, F. Florenzano, M. Pirro, F. Bagaglia, T. Kawarai, M. Zampolini, A. Orlacchio, and A. Orlacchio. 2014. miR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol. Aging 35:345-56. https://doi.org/10.1016/j.neurobiolaging.2013.08.003
- Vasudevan, S., Y. Tong, and J. A. Steitz. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931-1934. https://doi.org/10.1126/science.1149460
- Villa, C., E. Ridolfi, C. Fenoglio, L. Ghezzi, R. Vimercati, F. Clerici, A. Marcone, S. Gallone, M. Serpente, C. Cantoni, R. Bonsi, S. Cioffi, S. Cappa, M. Franceschi, I. Rainero, C. Mariani, E. Scarpini, and D. Galimberti. 2013. Expression of the transcription factor Sp1 and its regulatory hsa-miR-29b in peripheral blood mononuclear cells from patients with Alzheimer's disease. J. Alzheimers Dis. 35:487-494. https://doi.org/10.3233/JAD-122263
- Wang, H., S. Xiao, M. Wang, N. H. Kim, H. Li, and G. Wang. 2015. In silico identification of conserved microRNAs and their targets in bovine fat tissue. Gene 559:119-128. https://doi.org/10.1016/j.gene.2015.01.021
- Wang, H., Y. Zheng, G. Wang, and H. Li. 2013. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Mol. Biosyst. 9: 2154-2162. https://doi.org/10.1039/c3mb70084d
Cited by
- Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders vol.29, pp.7, 2016, https://doi.org/10.1515/revneuro-2017-0097