DOI QR코드

DOI QR Code

Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

  • Singh, Ajay (Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute) ;
  • Singh, Avtar (Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute) ;
  • Singh, Manvendra (Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute) ;
  • Prakash, Ved (Division of Animal Genetics, CSWRI) ;
  • Ambhore, G.S. (Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute) ;
  • Sahoo, S.K. (Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute) ;
  • Dash, Soumya (Dairy Cattle Breeding Division, ICAR-National Dairy Research Institute)
  • 투고 : 2015.08.01
  • 심사 : 2015.11.23
  • 발행 : 2016.06.01

초록

A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM) considering different order of Legendre polynomial for the additive genetic effect (4th order) and the permanent environmental effect (5th order). Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11) to 0.99 (TD-4 and TD-5). The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields.

키워드

참고문헌

  1. BAHS (Basic Animal Husbandry Statistics). 2013. Department of Animal Husbandry, Dairying & Fisheries, Ministry of Agriculture, Government of India, New Delhi, India.
  2. Bignardi, A. B., L. El Faro, V. L. Cardoso, P. F. Machado, and L. G. Albuquerque. 2009. Random regression models to estimate test-day milk yield genetic parameters of Holstein cows in Southeastern Brazil. Livest. Sci. 123:1-7. https://doi.org/10.1016/j.livsci.2008.09.021
  3. Brotherstone, S., I. M. S. White, and K. Meyer. 2000. Genetic modeling of daily milk yield using orthogonal polynomials and parametric curves. Anim. Sci. 70:407-415. https://doi.org/10.1017/S1357729800051754
  4. Cobuci, J. A., C. N. Costa, J. B. Neto, and A. F. de. Freitas. 2011. Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling. Rev. Bras. Zootec. 40:557-567. https://doi.org/10.1590/S1516-35982011000300013
  5. Elahi Torshizi, M., A. Aslamenejad, M. Nassiri, H. Farhangfar, J. Solkner, M. Kovac, G. Meszaros, and S. Malovrh. 2012. Evaluation of test day milk yield in Iranian primiparous Holstein using different random regression models. J. Anim. Sci. Adv. 2:664-667.
  6. Faro, L. E., V. L. Cardoso, and L. G. Albuquerque. 2008. Variance component estimates for test-day milk yield applying random regression models. Genet. Mol. Biol. 33:665-673.
  7. Geetha, E., A. K. Chakravarty, and V. K. Katneni. 2006. Genetic persistency of first lactation milk yield estimated using random regression model for Indian Murrah buffaloes. Asian Australas. J. Anim. Sci. 19:1696-1701. https://doi.org/10.5713/ajas.2006.1696
  8. Geetha, E., A. K. Chakravarty, and V. K. Katneni. 2007. Estimates of genetic parameters using random regression test day model for first lactation milk yield in Murrah buffaloes. Indian J. Anim. Sci. 77:898-901.
  9. Gurnani, M., R. K. Sethi, and R. Nagarcenkar. 1986. Dairy Information Bulletin, No. III, Development of Karan Fries Cattle at NDRI, Karnal, India. 9:1-2.
  10. Harvey, W. R. 1990. User's Guide for LSMLMW, Mixed Model Least-Squares and Maximum Likelihood Computer Program, Ohio State Univ., Columbus, OH, USA.
  11. Jamrozik, J., L. R. Schaeffer, and J. C. M. Dekkers. 1997. Genetic evaluation of dairy cattle using test day yields and random regression model. J. Dairy Sci. 80:1217-1226. https://doi.org/10.3168/jds.S0022-0302(97)76050-8
  12. Jamrozik, J. and L. R. Schaeffer. 1997. Estimates of genetic parameters for a test day model with Random regressions for yield traits of first lactation Holsteins. J. Dairy. Sci. 80:762-770. https://doi.org/10.3168/jds.S0022-0302(97)75996-4
  13. Kettunen, A., E. A. Mantysaari, I. Stranden, J. Poso, and M. Lidauer. 1998. Estimation of genetic parameters for first lactation test day milk production using random regression models. Proceedings 6th World Congress on Genetics Applied to Livestock Production, Armidale, NSW, Australia. 23:307-10.
  14. Kettunen, A., E. A. Mantysaari, and J. Poso. 2000. Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci. 66:251-261. https://doi.org/10.1016/S0301-6226(00)00166-4
  15. Kirkpatrick, M. and N. Heckman. 1989. A quantitative genetc model for growth, shape, reaction norms, and other infinite dimension characters. J. Math. Biol. 27:429-50. https://doi.org/10.1007/BF00290638
  16. Kirkpatrick, M., D. Lofsvold, and M. Bulmer. 1990. Analysis of the inheritance, selection and evaluation of growth trajectories. Genetics 124:979-993.
  17. Kokate, L. S., A. Singh, B. Rashia, R. S. Gandhi, A. K. Chakarvarty, A. K. Gupta, and G. K. Sachdeva. 2013. Genetic and non-genetic factors affecting monthly test day milk yields in Karan Fries cattle. Indian J. Anim. Sci. 83:385-389.
  18. Lidauer, M., E. A. Mantysaari, and I. Stranden. 2003. Comparison of test-day models for genetic evaluation of production traits in dairy cattle. Livest. Prod. Sci. 79:73-86. https://doi.org/10.1016/S0301-6226(02)00142-2
  19. Mayeres, P., J. Stoll, J. Bormann, R. Reents, and N. Gengler. 2004. Prediction of daily milk, fat, and protein production by a random regression test day model. J. Dairy Sci. 87:1925-1933. https://doi.org/10.3168/jds.S0022-0302(04)73351-2
  20. Meyer, K. 2010. WOMBAT. A program for mixed model analyses by Restricted Maximum Likelihood. University of England, Armidale, Australia.
  21. Meyer, K., H. U. Graser, and K. Hammond. 1989. Estimates of genetic parameters for first lactation test day production of Australian Black and White cows. Livest. Prod. Sci. 21:77-199.
  22. Rekaya, R., M. J. Carabano, and M. A. Toro. 1999. Use of test-day yields for the genetic evaluation of production traits in Holstein Friesian cattle. Livest. Prod. Sci. 57:203-217. https://doi.org/10.1016/S0301-6226(98)00181-X
  23. Roose, A. P. W., A. G. F. Harbers, and G. Jong. 2004. Random herd Curves in a test day model for milk, fat and protein production of dairy cattle in the Netherlands. J. Dairy Sci. 87:2693-2701. https://doi.org/10.3168/jds.S0022-0302(04)73396-2
  24. Schaeffer, L. R. 2004. Application of random regression models in animal breeding. Livest. Prod. Sci. 86:35-45. https://doi.org/10.1016/S0301-6226(03)00151-9
  25. Schaeffer, L. R. and J. C. M. Dekkers. 1994. Random regressions in animal models for test-day roduction in dairy cattle. Proceedings 5th World Congress on Genetics Applied to Livestock Production, Guelph, ON, Canada. 5:443-446.
  26. Schaeffer, L. R., J. Jamrozik, G. J. Kistemaker, and J. V. Doormaal. 2000. Experience with a test-day model. J. Dairy Sci. 83:1135-1144. https://doi.org/10.3168/jds.S0022-0302(00)74979-4
  27. Swalve, H. H. 1995. The effects of test day models on the estimation of genetic parameters and breeding values for dairy production traits. J. Dairy Sci. 78:929. https://doi.org/10.3168/jds.S0022-0302(95)76708-X
  28. Togashi, K. and C. Y. Lin. 2004. Efficiency of different selection criteria for persistency and lactation milk yield. J. Dairy Sci. 87:1528-1535. https://doi.org/10.3168/jds.S0022-0302(04)73304-4
  29. Zavadilova, L., J. Jamrozik, and L. R. Schaeffer. 2005. Genetic parameters for test-day model with random regression for production traits of Czech Holstein cattle. Czech. J. Anim. Sci. 50:142-154.

피인용 문헌

  1. Genome‐wide association for milk production and lactation curve parameters in Holstein dairy cows vol.137, pp.3, 2020, https://doi.org/10.1111/jbg.12442
  2. Genetic parameters for milk yield in imported Jersey and Jersey-Friesian cows using daily milk records in Sri Lanka vol.33, pp.11, 2016, https://doi.org/10.5713/ajas.19.0798
  3. Genomic prediction of crossbred dairy cattle in Tanzania: A route to productivity gains in smallholder dairy systems vol.104, pp.11, 2021, https://doi.org/10.3168/jds.2020-20052