DOI QR코드

DOI QR Code

The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase-Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway

  • Yu, Changsong (Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture) ;
  • Jia, Gang (Animal Nutrition Institute, Sichuan Agricultural University) ;
  • Deng, Qiuhong (Animal Nutrition Institute, Sichuan Agricultural University) ;
  • Zhao, Hua (Animal Nutrition Institute, Sichuan Agricultural University) ;
  • Chen, Xiaoling (Animal Nutrition Institute, Sichuan Agricultural University) ;
  • Liu, Guangmang (Animal Nutrition Institute, Sichuan Agricultural University) ;
  • Wang, Kangning (Animal Nutrition Institute, Sichuan Agricultural University)
  • Received : 2015.05.09
  • Accepted : 2015.11.11
  • Published : 2016.05.01

Abstract

Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that $100{\mu}g/mL$ LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

Keywords

References

  1. Agresti, A. and M. Kateri. 2011. Categoricaldata analysis. Springer Berlin Heidelberg, Berlin, Germany.
  2. Arce, C., M. Ramirez-Boo, C. Lucena, and J. J. Garrido. 2010. Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comp. Immunol. Microbiol. Dis. 33:161-174. https://doi.org/10.1016/j.cimid.2008.08.003
  3. Cameron, H. L. and M. H. Perdue. 2005. Stress impairs murine intestinal barrier function: Improvement by glucagon-like peptide-2. J. Pharmacol. Exp. Ther. 314:214-220. https://doi.org/10.1124/jpet.105.085373
  4. Cheeseman, C. I. 1997. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273:R1965-R1971. https://doi.org/10.1152/ajpregu.1997.273.6.R1965
  5. Chen, Z. Y., X. S. Feng, and P. Yang. 2008. Effect of glucagon-like peptide-2 on modulation of intestinal epithelium tight junction in rats with obstructive jaundice. Chin. J. Gen. Surg. 17:760-763.
  6. Dong, C. X., W. Zhao, C. Solomon, K. J. Rowland, C. Ackerley, S. Robine, and P. L. Brubaker. 2013. The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology 155:370-379.
  7. Geens, M. M. and T. A. Niewold. 2010. Preliminary characterization of the transcriptional response of the porcine intestinal cell line IPEC-J2 to enterotoxigenic Escherichia coli, Escherichia coli, and E. coli lipopolysaccharide. Comp. Funct. Genomics 2010: Article ID 469583.
  8. Guo, S., R. Al-Sadi, H. M. Said, and T. Y. Ma. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am. J. Pathol. 182:375-387. https://doi.org/10.1016/j.ajpath.2012.10.014
  9. Gonzalez-Mariscal, L., R. Tapia, and D. Chamorro. 2008. Crosstalk of tight junction components with signaling pathways. Biochem. Biophys. Acta-Biomembranes 1778:729-756. https://doi.org/10.1016/j.bbamem.2007.08.018
  10. Hu, C. H., K. Xiao, Z. S. Luan, and J. Song. 2013. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 91:1094-1101. https://doi.org/10.2527/jas.2012-5796
  11. Hou, Y., L. Wang, W. Zhang, Z. Yang, B. Ding, H. Zhu, and G. Wu. 2012. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233-1242. https://doi.org/10.1007/s00726-011-1191-9
  12. Koehler, J. A., W. Harper, M. Barnard, B. Yusta, and D. J. Drucker. 2008. Glucagon-like peptide-2 does not modify the growth or survival of murine or human intestinal tumor cells. Cancer Res. 68:7897-7904. https://doi.org/10.1158/0008-5472.CAN-08-0029
  13. Li. Q., Y. Liu, Z. Che, H. Zhu, G. Meng, Y. Hou, and F. Chen. 2012. Dietary L-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs. Innate Immun. 18:804-814. https://doi.org/10.1177/1753425912441955
  14. Liu, Y., J. Huang, Y. Hou, H. Zhu, S. Zhao, B. Ding, and W. Fan. 2008. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr. 100:552-560. https://doi.org/10.1017/S0007114508911612
  15. Moran, G. W., C. O'Neill, and J. T. McLaughlin. 2012. GLP-2 enhances barrier formation and attenuates $TNF{\alpha}$-induced changes in a Caco-2 cell model of the intestinal barrier. Regul. Pept. 178:95-101. https://doi.org/10.1016/j.regpep.2012.07.002
  16. Naimi, R. M., K. B. Madsen, C. Askov-Hansen, C. F. Brandt, B. Hartmann, J. J. Holst, and P. B. Jeppesen. 2013. A doseequivalent comparison of the effects of continuous subcutaneous glucagon-like peptide 2 (GLP-2) infusions versus meal related GLP-2 injections in the treatment of short bowel syndrome (SBS) patients. Regul. Pept. 184:47-53. https://doi.org/10.1016/j.regpep.2013.03.023
  17. Niessen, C. M. and C. J. Gottardi. 2008. Molecular components of the adherens junction. Biochem. Biophys. Acta-Biomembranes 1778:562-571. https://doi.org/10.1016/j.bbamem.2007.12.015
  18. Paszti-Gere, E., G. Matis, O. Farkas, A. Kulcsar, O. Palocz, G. Csiko, and P. Galfi. 2014. The effects of intestinal LPS exposure on inflammatory responses in a porcine enterohepatic co-culture system. Inflammation 37:247-260. https://doi.org/10.1007/s10753-013-9735-7
  19. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real time RT-PCR. Nucl. Acids Res. 29:e45. https://doi.org/10.1093/nar/29.9.e45
  20. Razzuoli, E., R. Villa, and M. Amadori. 2013. IPEC-J2 cells as reporter system of the anti-inflammatory control actions of interferon-alpha. J. Interferon. Cytokine Res. 33:597-605. https://doi.org/10.1089/jir.2012.0127
  21. Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. Rivier, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G352-G363. https://doi.org/10.1152/ajpgi.00081.2009
  22. Sigalet, D. L., E. de Heuvel, L. Wallace, E. Bulloch, J. Turner, P. Nation, and J. J. Holst. 2014. Effects of chronic glucagon-like peptide-2 therapy during weaning in neonatal pigs. Regul. Pept. 188:70-80. https://doi.org/10.1016/j.regpep.2013.12.006
  23. Shi, X., F. Zhou, X. Li, B. Chang, D. Li, Y. Wang, and X. Guan. 2013. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metabol. 18:86-98. https://doi.org/10.1016/j.cmet.2013.06.014
  24. Shi, X., X. Li, Y. Wang, K. Zhang, F. Zhou, L. Chan, and X. Guan. 2011. Glucagon-like peptide-2-stimulated protein synthesis through the PI 3-kinase-dependent Akt-mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab. 300:E554-E563. https://doi.org/10.1152/ajpendo.00620.2010
  25. Thymann, T., I. Le Huërou-Luron, Y. M. Petersen, M. S. Hedemann, J. Elinf, B. B. Jensen, and P. T. Sangild. 2014. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning. J. Anim. Sci. 92:2070-2079. https://doi.org/10.2527/jas.2013-7015
  26. Wijtten, P. J., J. van der Meulen, and M. W. Verstegen. 2011. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 105:967-981. https://doi.org/10.1017/S0007114510005660
  27. Yusta, B., J. Estall, and D. J. Drucker. 2002. Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 27:24896-24906.
  28. Zhao, Y., G. Qin, Z. Sun, D. Che, N. Bao, and X. Zhang. 2011. Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets. Int. J. Mol. Sci. 12:8502-8512. https://doi.org/10.3390/ijms12128502

Cited by

  1. signalling pathway vol.101, pp.6, 2017, https://doi.org/10.1111/jpn.12644
  2. Growth factors and their use in short bowel vol.33, pp.3, 2017, https://doi.org/10.1097/MOG.0000000000000351
  3. Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens pp.09312439, 2017, https://doi.org/10.1111/jpn.12808
  4. Glucagon-Like Peptide-2 Improve Intestinal Mucosal Barrier Function in Aged Rats vol.22, pp.6, 2018, https://doi.org/10.1007/s12603-018-1022-8
  5. Glucagon-like peptide 2 for intestinal stem cell and Paneth cell repair during graft-versus-host disease in mice and humans vol.136, pp.12, 2016, https://doi.org/10.1182/blood.2020005957
  6. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function vol.12, pp.2, 2016, https://doi.org/10.1093/advances/nmaa139
  7. Gut microbiome, prebiotics, intestinal permeability and diabetes complications vol.35, pp.3, 2016, https://doi.org/10.1016/j.beem.2021.101507