참고문헌
- Akgoz, B. and Civalek, O. (2012), "Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48(4), 863-873. https://doi.org/10.1007/s11012-012-9639-x
- Akgoz, B. and Civalek, O. (2014a), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
- Akgoz, B. and Civalek, O. (2014b), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
- Alshorbagy, A.E., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Aranda-Ruiz, A.J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001. https://doi.org/10.1016/j.compstruct.2012.03.033
- Asgharl, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
- Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
- Bath, J. and Turberfield, A. J. (2007), "DNA nanomachines", Nat Nano, 2, 275-284. https://doi.org/10.1038/nnano.2007.104
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
- Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19(34), 345703. https://doi.org/10.1088/0957-4484/19/34/345703
- Chen, L., Nakamura, M., Schindler, T.D., Parker, D. and Bryant, Z. (2012), "Engineering controllable bidirectional molecular motors based on myosin", Nat Nano, 7, 252-256. https://doi.org/10.1038/nnano.2012.19
- Civalek, O. and Akgoz, B. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Comput. Mater. Sci., 77, 295-303. https://doi.org/10.1016/j.commatsci.2013.04.055
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Modell., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Dehrouyeh-Semnani, A. (2015), "The influence of size effect on flapwise vibration of rotating microbeams", Int. J. Eng. Sci., 94, 150-163. https://doi.org/10.1016/j.ijengsci.2015.05.009
- Dehrouyeh-Semnani, A.M. (2015), "The influence of size effect on flapwise vibration of rotating microbeams", Int. J. Eng. Sci., 94, 150-163. https://doi.org/10.1016/j.ijengsci.2015.05.009
- Dewey, H. and Hodges, M.J.R. (1981), "Free-vibration analysis of rotating beams by a variable-order finite-element method", AIAA, 19(11).
- Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1091524.
- Ebrahimi, F. and Salari, E. (2015b), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Eltaher, M., Emam, S.A. and Mahmoud F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Ghadiri, M., Hosseni, S. and Shafiei, N. (2015), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1091527.
- Ghadiri, M. and Shafiei, N. (2015), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen‟s theory using differential quadrature method", Microsyst. Technol., doi: 10.1007/s00542-015-2662-9.
- Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, doi: 10.1177/1077546315627723.
- Ghadiri, M., Shafiei, N. and Safarpour, H. (2016), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen‟s nonlocal elasticity", Microsyst. Technol., doi: 10.1007/s00542-016-2822-6.
- Goel, A. and Vogel, V. (2008), "Harnessing biological motors to engineer systems for nanoscale transport and assembly", Nat Nano, 3, 465-475. https://doi.org/10.1038/nnano.2008.190
- Kaya, M.O. (2006), "Free vibration analysis of a rotating Timoshenko beam by differential transform method", Aircraft Eng. Aerospace Technol., 78(3), 194-203. https://doi.org/10.1108/17488840610663657
- Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Lee, L.K., Ginsburg, M.A., Crovace, C., Donohoe, M. and Stock, D. (2010), "Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching", Nature, 466(7309), 996-1000. https://doi.org/10.1038/nature09300
- Lim, C., Li, C. and Yu, J. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2, 223-233. https://doi.org/10.12989/imm.2009.2.3.223
- Lubbe, A.S., Ruangsupapichat, N., Caroli, G. and Feringa, B.L. (2011), "Control of rotor function in light-driven molecular motors", J. Organic Chem., 76(21), 8599-8610. https://doi.org/10.1021/jo201583z
- Metin aydogdu, V.T. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Murmu, T. and Adhikari, S. (2010), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12).
- Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032
- Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Result. Phys., 1(1), 17-25. https://doi.org/10.1016/j.rinp.2011.06.002
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low-dimensional Systems and Nanostructures, 42, 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Shafiei, N., Kazemi, M. and Fatahi, L. (2015), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1128025.
- Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
- Shu, C. (2000), Differential quadrature and its application in engineering, Springer.
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15, 791-798. https://doi.org/10.1002/fld.1650150704
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Tauchert, T. R. (1974), Energy principles in structural mechanics, McGraw-Hill Companies.
- Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., Mcguire, A.F., Klebanov, N. and Sykes, E.C.H. (2011), "Experimental demonstration of a single-molecule electric motor", Nat Nano, 6, 625-629. https://doi.org/10.1038/nnano.2011.142
- Van delden, R.A., Ter wiel, M.K.J., Pollard, M.M., Vicario, J., Koumura, N. and Feringa, B.L. (2005), "Unidirectional molecular motor on a gold surface", Nature, 437, 1337-1340. https://doi.org/10.1038/nature04127
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18, 105401. https://doi.org/10.1088/0957-4484/18/10/105401
피인용 문헌
- Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
- Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
- Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams vol.40, pp.5, 2017, https://doi.org/10.1080/01495739.2016.1230483
- Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
- Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory vol.45, 2017, https://doi.org/10.1016/j.apm.2016.12.006
- Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory vol.30, pp.6, 2017, https://doi.org/10.1016/j.camss.2017.09.007
- Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3492-8
- Modified porosity model in analysis of functionally graded porous nanobeams vol.40, pp.3, 2018, https://doi.org/10.1007/s40430-018-1065-0
- Modelling of thermally affected elastic wave propagation within rotating Mori–Tanaka-based heterogeneous nanostructures vol.24, pp.6, 2018, https://doi.org/10.1007/s00542-018-3800-y
- Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.209
- A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.351
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.121
- Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat vol.20, pp.4, 2016, https://doi.org/10.12989/sss.2017.20.4.451
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.021
- Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.039
- Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system vol.21, pp.3, 2016, https://doi.org/10.12989/sss.2018.21.3.349
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.373
- Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.201
- Nonlinear bending and thermal post-buckling behavior of functionally graded piezoelectric nanosize beams using a refined model vol.6, pp.6, 2016, https://doi.org/10.1088/2053-1591/ab0f78
- A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory vol.89, pp.9, 2016, https://doi.org/10.1007/s00419-019-01542-z
- Thermal Effect on Vibration Responses of Double-Layered Graphene Sheet-Based Nanomechanical Resonators Based on Galerkin Strip Transfer Function Method vol.49, pp.5, 2016, https://doi.org/10.1007/s13538-019-00694-1
- Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model vol.20, pp.3, 2016, https://doi.org/10.1142/s0219455420500406
- Stability of Vibrating Functionally Graded Nanoplates with Axial Motion Based on the Nonlocal Strain Gradient Theory vol.20, pp.8, 2020, https://doi.org/10.1142/s0219455420500881
- Time harmonic interactions in non local thermoelastic solid with two temperatures vol.74, pp.3, 2016, https://doi.org/10.12989/sem.2020.74.3.341
- Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force vol.22, pp.2, 2016, https://doi.org/10.12989/gae.2020.22.2.109
- Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives vol.9, pp.5, 2020, https://doi.org/10.12989/csm.2020.9.5.397
- Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2016, https://doi.org/10.12989/scs.2021.38.2.141
- Free vibration of bi-directional functionally graded imperfect nanobeams under rotational velocity vol.119, pp.None, 2021, https://doi.org/10.1016/j.ast.2021.107210