References
- Bae, S.H., Cho, J.R. and Jeong, W.B. (2014a), "A discrete convolutional Hilbert transform with the consistent imaginary initial conditions for the time-domain analysis of five-layered viscoelastic sandwich beam", Comput. Method. Appl. M., 268, 245-263. https://doi.org/10.1016/j.cma.2013.09.010
- Bae, S.H., Cho, J.R. and Jeong, W.B. (2014b), "Time-duration extended Hilbert transform superposition for the reliable impact response analysis of five-layered damped sandwich beams", Finite Elem. Anal. Des., 90, 41-49. https://doi.org/10.1016/j.finel.2014.06.007
- Bae, S.H., Jeong, W.B. and Cho, J.R. (2014c), "Transient response of complex stiffness system using a green function from the Hilbert transform and the steady space technic", Proc. Inter.noise, 1-10.
- Chen, L.Y., Chen, J.T., Chen, C.H. and Hong, H.K. (1994), "Free vibrations of a SDOF system with hysteretic damping", Mech. Res. Commun., 21, 599-604. https://doi.org/10.1016/0093-6413(94)90023-X
- Chen, J.T. and You, D.W. (1997), "Hysteretic damping revisited", Adv. Eng. Softw., 28, 165-171. https://doi.org/10.1016/S0965-9978(96)00052-X
- Cho, J.R., Lee, H.W., Jeong, W.B., Jeong, K.M. and Kim, K.W. (2013), "Numerical estimation of rolling resistance and temperature distribution of 3-D periodic patterned tire", Int. J. Solids Struct., 50, 86-96. https://doi.org/10.1016/j.ijsolstr.2012.09.004
- Crandall, S.H. (1995), "A new hysteretic damping model?", Mech. Res. Commun., 22, 201-202. https://doi.org/10.1016/S0093-6413(99)80001-9
- Fink, M. (1992), "Time reversal of ultrasonic fields, I. Basic principles", IEEE T. Ultrason. Ferr., 39(5), 555-566. https://doi.org/10.1109/58.156174
- Genta, G. and Amati, N. (2010), "Hysteretic damping in rotordynamics: An equivalent formulation", J. Sound Vib., 329(22), 4772-4784. https://doi.org/10.1016/j.jsv.2010.04.036
- Hajianmaleki, M. and Qatu, M.S. (2013), "Vibrations of straight and curved composite beams: A review", Comput. Struct., 100, 218-232. https://doi.org/10.1016/j.compstruct.2013.01.001
- Inaudi, J. and Makris, N. (1996), "Time-domain analysis of linear hysteretic damping", Earthq. Eng. Struct. D., 25, 529-545. https://doi.org/10.1002/(SICI)1096-9845(199606)25:6<529::AID-EQE549>3.0.CO;2-P
- Johansson, M. (1999), The Hilbert Transform, Master Thesis, Vaxjo University.
- Li, Z., Qiao, G., Sun, Z., Zhao, H. and Guo, R. (2012), "Short baseline positioning with an improved time reversal technique in a multi-path channel", J. Marine Sci. Appl., 11(2), 251-257. https://doi.org/10.1007/s11804-012-1130-5
- Luo, H., Fang, X. and Ertas, B. (2009), "Hilbert transform and its engineering applications", AIAA J., 47(4), 923-932. https://doi.org/10.2514/1.37649
- Mead, D.J. and Markus, S. (1969), "The forced vibrations of a three-layer, damped sandwich beam with arbitrary boundary conditions", J. Sound Vib., 10(2), 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
- Meirovitch, M. (1986), Elements of Vibration Analysis, McGraw-Hill.
- Mohammadi, F. and Sedaghati, R. (2012), "Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer", Int. J. Mech. Sci., 54(1), 156-171. https://doi.org/10.1016/j.ijmecsci.2011.10.006
- Nguyen, H., Andersen, T. and Pedersen, G.F. (2005), "The potential use of time reversal techniques in multiple element antenna systems", IEEE Commun. Lett., 9(1), 40-42. https://doi.org/10.1109/LCOMM.2005.01011
- Rao, S.S. (1995), Mechanical Vibrations, 3rd eds, Singapore.
- Padois, T., Prax, C., Valeau, V. and Marx, D. (2012), "Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique", Acoust. Soc. Am., 132(4), 2397. https://doi.org/10.1121/1.4747015
- Sainsbury, M.G. and Masti, R.S. (2007), "Vibration damping of cylindrical shells using strain-energy-based distribution of an add-on viscoelastic treatment", Finite Elem. Anal. Des., 43, 175-192. https://doi.org/10.1016/j.finel.2006.09.003
- Salehi, M., Bakhtiari-Nejad, F. and Besharati, A. (2008), "Time-domain analysis of sandwich shells with passive constrained viscoelastic layers", Scientia Iranica, 15(5), 637-43.
- Wang, Z.C., Geng, D., Ren, W.X., Chen, G.D. and Zhang, G.F. (2015), "Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform", Smart Struct. Syst., 15(1), 1-13. https://doi.org/10.12989/sss.2015.15.1.001
- Won, S.G., Bae, S.H., Cho, J.R., Bae, S.R. and Jeong, W.B. (2013), "Three-layered damped beam element for forced vibration analysis of symmetric sandwich structures with a viscoelastic core", Finite Elem. Anal. Des., 68, 39-51. https://doi.org/10.1016/j.finel.2013.01.004
- Zhu, H., Hu, Y. and Pi, Y. (2014), "Transverse hysteretic damping characteristics of a serpentine belt: Modeling and experimental investigation", J. Sound Vib., 333(25), 7019-7035. https://doi.org/10.1016/j.jsv.2014.06.020
Cited by
- Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model vol.59, pp.2, 2016, https://doi.org/10.12989/sem.2016.59.2.243
- Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform and effective eigenvalues vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.263
- Development and Supervision of Robo-Advisors under Digital Financial Inclusion in Complex Systems vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6666089
- Using a Tuned-Inerto-Viscous-Hysteretic-Damper (TIVhD) for vibration suppression in multi-storey building structures vol.708, pp.1, 2016, https://doi.org/10.1088/1755-1315/708/1/012012