DOI QR코드

DOI QR Code

A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method

  • Fesharaki, Javad Jafari (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University) ;
  • Golabi, Sa'id (Department of Mechanical Engineering, Faculty of Engineering, University of Kashan)
  • Received : 2015.06.19
  • Accepted : 2016.02.02
  • Published : 2016.05.25

Abstract

This paper is focused on stiffness ratio effect and a new method to specify the best pattern of piezoelectric patches placement around a hole in a plate under tension to reduce the stress concentration factor. To investigate the stiffness ratio effect, some different values greater and less than unity are considered. Then a python code is developed by using particle swarm optimization algorithm to specify the best locations of piezoelectric actuators around the hole for each stiffness ratio. The results show that, there is a line called "reference line" for each plate with a hole under tension, which can guide the location of actuator patches in plate to have the maximum stress concentration reduction. The reference line also specifies that actuators should be located horizontally or vertically. This reference line is located at an angle of about 65 degrees from the stress line in plate. Finally two experimental tests for two different locations of the patches with various voltages are carried out for validation of the results.

Keywords

References

  1. Adali, S. Sadek, I.S., Bruch Jr., J.C., Sloss, J.M. and Cagdas, I.U., (2006), "Deflection control of elastically restrained laminated frames under deterministic and uncertain loads using induced strain actuators", Compos. Struct., 76(1-2), 2-13. https://doi.org/10.1016/j.compstruct.2006.06.002
  2. Amezquita-Sanchez, J.P., Dominguez-Gonzalez, A., Sedaghati, R., Romero-Troncoso, R.d.J. and Osornio-Rios, R.A. (2014), "Vibration control on smart civil structures: A review", Mech. Adv. Mater. Str., 21(1), 23-28. https://doi.org/10.1080/15376494.2012.677103
  3. Chee, C.Y.K., Tong, L. and Steven, G.P. (2002), "Static shape control of composite plates using a slope-displacement-based algorithm", AIAA J., 40(8), 1611-1618. https://doi.org/10.2514/2.1831
  4. Franco Correia, V.M., Mota Soares, C.M. and Mota Soares, C.A. (2003), "Buckling optimization of composite laminated adaptive structures", Compos. Struct., 62(3-4), 315-321. https://doi.org/10.1016/j.compstruct.2003.09.030
  5. Frecker, M.I. (2003), "Recent advances in optimization of smart structures and actuators", J. Intel. Mat. Syst. Str., 14(4-5), 207-216. https://doi.org/10.1177/1045389X03031062
  6. Gandhi, M.V. and Thompson, B.S. (1992), Smart Materials and Structures, Chapman & Hall, London.
  7. Gupta, V., Sharma, M. and Thakur, N. (2010), "Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review", J. Intel. Mat. Syst. Str., 21(12), 1227-1243. https://doi.org/10.1177/1045389X10381659
  8. Jafari Fesharaki, J. and Golabi, S. (2014), "Optimum pattern of piezoelectric actuator placement for stress concentration reduction in a plate with a hole using particle swarm optimization algorithm", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 1-15.
  9. Kang, Z. and Tong, L. (2008), "Topology optimization-based distribution design of actuation voltage in static shape control of plates", Comput. Struct., 86(19-20), 1885-1893. https://doi.org/10.1016/j.compstruc.2008.03.002
  10. Kang, Z., Wang, X. and Luo, Z. (2012), "Topology optimization for static shape control of piezoelectric plates with penalization on intermediate actuation voltage", J. Mech. Design, 134(5), 051006. https://doi.org/10.1115/1.4006527
  11. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the 1995 IEEE International Conference on Neural Networks, 1942-1948.
  12. Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", Int. J. Mech. Sci., 46(3), 411-431. https://doi.org/10.1016/j.ijmecsci.2004.03.011
  13. Lin, J.C. and Nien, M.H. (2007), "Adaptive modeling and shape control of laminated plates using piezoelectric actuators", J. Mat. Proc. Tech., 189(1-3), 231-236. https://doi.org/10.1016/j.jmatprotec.2007.01.027
  14. Luo, Q. and Tong, L. (2006), "High precision shape control of plates using orthotropic piezoelectric actuators", Finite Elem. Anal. Des., 42(11), 1009-1020. https://doi.org/10.1016/j.finel.2006.03.002
  15. Mehrabian, A.R. and Yousefi-Koma, A. (2011), "A novel technique for optimal placement of piezoelectric actuators on smart structures", J. Franklin Inst., 348(1), 12-23. https://doi.org/10.1016/j.jfranklin.2009.02.006
  16. Mukherjee, A. and Joshi, S. (2002), "Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates", AIAA J., 40(6), 1204-1210. https://doi.org/10.2514/2.1772
  17. Nakasone, P.H. and Silva, E.C.N. (2010), "Dynamic design of piezoelectric laminated sensors and actuators using topology optimization", J. Intel. Mat. Syst. Str., 21(16), 1627-1652. https://doi.org/10.1177/1045389X10386130
  18. Nguyen, Q. and Tong, L. (2004), "Shape control of smart composite plate with non-rectangular piezoelectric actuators", Compos. Struct., 66(1-4), 207-214. https://doi.org/10.1016/j.compstruct.2004.04.039
  19. Nguyen, Q. and Tong, L. (2007a), "Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures", Mat. Design, 28(2), 387-399. https://doi.org/10.1016/j.matdes.2005.09.023
  20. Nguyen, Q., Tong, L. and Gu, Y. (2007b), "Evolutionary piezoelectric actuators design optimisation for static shape control of smart plates", Comput. Method. Appl. M., 197(1-4), 47-60. https://doi.org/10.1016/j.cma.2007.07.018
  21. Rader, A.A., Afagh, F.F., Yousefi-Koma, A. and Zimcik, D.G. (2007), "Optimization of piezoelectric actuator configuration on a flexible fin for vibration control using genetic algorithms", J. Intel. Mat. Syst. Str., 18, 1015-1033. https://doi.org/10.1177/1045389X06072400
  22. Rao, S.S. (2009), Engineering Optimization, John Wiley & Sons. Inc., Hoboken, New Jersey.
  23. Reddy, J. N. (1997), Mechanics of laminated composite plates: theory and applications, Boca Raton: CRC Press.
  24. Sensharma, P.K. and Haftka, R.T. (1996), "Limits of stress reduction in a plate with a hole using piezoelectric actuators", J. Intel. Mat. Syst. Str., 7(4), 363-371. https://doi.org/10.1177/1045389X9600700401
  25. Sensharma, P.K., Palantera, M.J. and Haftka, R.T. (1993) "Stress reduction in an isotropic plate with a hole by applied induced strains", J. Intel. Mat. Sys. Struct. 4(4), 509-518. https://doi.org/10.1177/1045389X9300400410
  26. Shah, D.K., Joshi, S.P. and Chan, W.S. (1993), "Static structural response of plates with piezoceramic layers", Smart Mater. Str., 2(3), 172. https://doi.org/10.1088/0964-1726/2/3/005
  27. Shah, D.K., Joshi, S.P. and Chan, W.S. (1994), "Stress concentration reduction in a plate with a hole using piezoceramic layers", Smart Mater. Str., 3, 302. https://doi.org/10.1088/0964-1726/3/3/006
  28. Silva, S.d.M., Ribeiro, R., Rodrigues, J.D., Vaz, M.A.P. and Monteiro, J.M. (2004), "The application of genetic algorithms for shape control with piezoelectric patches-an experimental comparison", Smart Mat. Struct., 13(1), 220. https://doi.org/10.1088/0964-1726/13/1/026
  29. Sun, D., and Tong, L. (2005), "Design optimization of piezoelectric actuator patterns for static shape control of smart plates", Smart Mater. Str., 14(6), 1353. https://doi.org/10.1088/0964-1726/14/6/027
  30. Sun, D., Tong, L. and Liyong, T. (2004), "Static shape control of structures using nonlinear piezoelectric actuators with energy constraints", Smart Mater. Str., 13(5), 1059. https://doi.org/10.1088/0964-1726/13/5/012
  31. Sun, D., Tong, L. and Wang, D. (2004), "An incremental algorithm for static shape control of smart structures with nonlinear piezoelectric actuators", Int. J. Solids Struct., 41(9-10), 2277-2292. https://doi.org/10.1016/j.ijsolstr.2003.12.002
  32. Xu, S.X. and Koko, T.S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Finite Elem. Anal. Des., 40(3), 241-262. https://doi.org/10.1016/S0168-874X(02)00225-1

Cited by

  1. Estimation of Stress Concentration Factor of Plate with Hole using Piezoelectric Actuator and Finite Element Method vol.184, 2017, https://doi.org/10.1088/1757-899X/184/1/012064
  2. Natural Computing Applied to the Underground System: A Synergistic Approach for Smart Cities vol.18, pp.12, 2018, https://doi.org/10.3390/s18124094
  3. Best pattern for placement of piezoelectric actuators in classical plate to reduce stress concentration using PSO algorithm pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1472332
  4. Evaluating the Reduction of Stress Intensity Factor in Center-Cracked Plates Using Piezoelectric Actuators vol.7, pp.2, 2018, https://doi.org/10.3390/act7020025
  5. Thermo-mechanical behavior of a functionally graded hollow cylinder with an elliptic hole vol.42, pp.1, 2016, https://doi.org/10.1007/s40430-019-2135-7