DOI QR코드

DOI QR Code

Analysis of the Effect of Temperature on the Pesticide Efficacy and Simulation of the Change in the Amount of Pesticide Use

온도가 농약효과에 미치는 영향분석 및 농약사용량 예측 모의실험

  • Mo, Hyoung-ho (Institute of Life Science and Natural Resources, Korea University) ;
  • Kang, Ju Wan (Department of Applied Biology, Gyeongsang National University) ;
  • Cho, Kijong (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Bae, Yeon Jae (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Mi-Gyung (Department of Food Science and Biotechnology, National Andong University) ;
  • Park, Jung-Joon (Department of Applied Biology, Gyeongsang National University)
  • 모형호 (고려대학교 생명자원연구소) ;
  • 강주완 (국립경상대학교 식물의학과) ;
  • 조기종 (고려대학교 환경생태공학부) ;
  • 배연재 (고려대학교 환경생태공학부) ;
  • 이미경 (국립안동대학교 식품생명공학과) ;
  • 박정준 (국립경상대학교 식물의학과)
  • Received : 2016.02.23
  • Accepted : 2016.03.14
  • Published : 2016.03.31

Abstract

Pest population density models are very important to monitor the initial occurrence and to understand the continuous fluctuation pattern of pest in pest management. This is one of the major issues in agriculture because these predictions make pesticides more effective and environmental impact of pesticides less. In this study, we combined and predicted the mortality change of pest caused by pesticides with temperature change and population dynamic model. Sensitive strain of two-spotted spider mite (Tetranychus urticae Koch) with kidney bean leaf as host was exposed to mixed acaricide, Acrinathrin-Spiromesifen and organotin acaricide, Azocyclotin, at 20, 25, 30, and $35^{\circ}C$, respectively. There was significant difference in mortality of T. urticae among pesticides and temperatures. We used DYMEX to simulate population density of T. urticae and predicted that the initial management time and number of chemical control would be changed in the future with climate change. There would be implications for strategies for pest management and selection process of pesticide in the future corresponding climate change.

기후변화에 따른 해충개체군 증감모형은 해충방제를 위한 초발생예찰과 연속적 해충변동 양상의 파악에 매우 중요하다. 이러한 예측은 농약사용의 효율성을 높이고, 환경에 적은 영향을 줄 수 있으므로, 현대 해충방제전략의 화두로 볼 수 있다. 본 연구는 온도변화에 따른 해충의 농약효과에 따른 사충률의 변화를 개체군 모형과 결합시켜 모의했다. 감수성 점박이응애를 강낭콩을 기주로 20, 25, 30, $35^{\circ}C$에서 Acrinathrin-Spiromesifen 혼합제와 Azocyclotin 유기주석계 농약에 노출시켰다. 생물검정 결과 점박이응애의 사충률은 온도와 농약의 종류에 따라 유의한 차이가 발생했다. 점박이응애의 개체군 밀도변동 모의는 DYMEX를 이용했으며, 모의결과 농약의 종류별로 기후변화에 따른 초기방제 시기와 방제횟수에 차이가 나타날 것으로 예측됐다. 본 연구결과는 미래의 기후변화에 대응한 해충방제 전략과 농약 선발에 있어 중요한 시사점을 제공할 것으로 사료된다.

Keywords

References

  1. Adams RM. 1989. Global Climate Change and Agriculture: An Economic Perspective. Am. J. Agr. Econ. 71:1272-1279. https://doi.org/10.2307/1243120
  2. Adams RM, C Rosenzweig, RM Peart, JT Ritchie, BA McCarl, JD Glyer, RB Curry, JW Jones, KJ Boote and LH Allen Jr. 1990. Global climate change and US agriculture. Nature 345:219-224. https://doi.org/10.1038/345219a0
  3. Bloomfield JP, RJ Williams, DC Gooddy, JN Cape and P Guha. 2006. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater-a UK perspective. Sci. Total Environ. 369:163-177. https://doi.org/10.1016/j.scitotenv.2006.05.019
  4. Boxall AB, A Hardy, S Beulke, T Boucard, L Burgin, PD Falloon, PM Haygarth, T Hutchinson, RS Kovats, G Leonardi, LS Levy, G Nichols, SA Parsons, L Potts, D Stone, E Topp, DB Turley, K Walsh, EMH Wellington and RJ Willians. 2009. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture. Environ. Health Perspect. 117:508-514. https://doi.org/10.1289/ehp.0800084
  5. Chen C and BA McCarl. 2001. An Investigation of the Relationship between Pesticide Usage and Climate Change. Clim. Chang. 50:474-487.
  6. He W, M You, L Vasseur, G Yang, M Xie, K Cui and S Huang. 2012. Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella. Genomics 99:169-177. https://doi.org/10.1016/j.ygeno.2011.12.009
  7. Kim M and D Lee. 2011. Korean climate change assessment report 2010. Ministry of Environment.
  8. Lewandrowski J and D Schimmelpfennig. 1999. Economic implications of climate change for US agriculture: assessing recent evidence. Land Econ. 75:39-57. https://doi.org/10.2307/3146992
  9. Maywald GF, DJ Kriticos, RW Sutherst and W Bottomley. 2007a. Dymex Model Builder Version 3: User's Guide. Hearne Scientific Software Pty Ltd, Melbourne.
  10. Maywald GF, W Bottomley and RW Sutherst. 2007b. DYMEX Model simulator, version 3: user's guide. Hearne Scientific Software Pty Ltd, Melbourne.
  11. Park JJ, KW Park, KI Shin and K Cho. 2011a. Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses. Korean J. Hortic. Sci. 29:420-432.
  12. Park JJ, JH Lee, KI Shin, SE Lee and K Cho. 2011b. Geostatistical analysis of the attractive distance of two different sizes of yellow sticky traps for greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae), in cherry tomato greenhouses. Aust. J. Entomol. 50:144-151. https://doi.org/10.1111/j.1440-6055.2010.00796.x
  13. Park JJ, HH Mo, DH Lee, KI Shin and K Cho. 2012. Modeling and Validation of Population Dynamics of the American Serpentine Leafminer (Liriomyza trifolii) Using Leaf Surface Temperatures of Greenhouses Cherry Tomatoes. Korean J. Appl. Entomol. 51:235-243. https://doi.org/10.5656/KSAE.2012.06.0.013
  14. Rohr JR, TM Sesterhenn and C Stieha. 2011. Will climate change reduce the effects of a pesticide on amphibians?: partitioning effects on exposure and susceptibility to contaminants. Glob. Chang. Biol. 17:657-666. https://doi.org/10.1111/j.1365-2486.2010.02301.x
  15. SAS Institute. 1995. SAS user's guide. SAS Institute, NC.
  16. Sabelis MW. 1982. Biological control of two-spotted spider mites using phytoseiid predators. Centre for Agricultural Publishing and Documentation. Wageningen.
  17. Sutherst RW, GF Maywald and DJ Kriticos. 2007. CLIMEX version 3: user's guide. Hearne Scientific Software Pty Ltd.
  18. Wagner TL, Hi Wu, PJH Sharpe and RN Coulson. 1984. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. Entomol. Soc. Am. 77:475-483. https://doi.org/10.1093/aesa/77.5.475
  19. Yu YL, LJ Huang, LP Wang and JC Wu. 2012. The combined effects of temperature and insecticide on the fecundity of adult males and adult females of the brown planthopper Nilaparvata lugens Stal (Hemiptera: Delphacidae). Crop Prot. 34:59-64. https://doi.org/10.1016/j.cropro.2011.08.026