참고문헌
- Agrawal, R., Imielinski, T. and Swami, A. (1993), "Database mining: a performance perspective", IEEE Tran. Knowled. Data Eng., 4(6), 914-925.
- Bagci, M. (2010), "Neural network model for Moment-Curvature relationship of reinforced concrete sections", Math. Comput. Appl., 15(1), 66-78.
- Bose, N.K. and Liang, P. (1996), Neural Network Fundamentals with Graphs, Algorithms and Applications, McGraw-Hill.
- Caglar, N., Elmas, M., Yaman, Z.D. and Saribiyik, M. (2008), "Neural networks in 3-dimensional dynamic analysis of reinforced concrete buildings", Constr. Build. Mater., 22(5), 788-800. https://doi.org/10.1016/j.conbuildmat.2007.01.029
- Chen, M.S., Han, J. and Yu, P.S. (1996), "Data mining: an overview from a database perspective", IEEE Tran. Knowled. Data Eng., 8(6), 866-83. https://doi.org/10.1109/69.553155
- Elazouni, A.M., Nosair, I.A., Mohieldin, Y.A. and Mohamed, A.G. (1997), "Estimating resource requirements at conceptual stage using neural networks", J. Comput. Civil Eng., 11(4), 217-223. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:4(217)
- Erdem, H. (2010), "Prediction of moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Softw., 41(2), 270-276. https://doi.org/10.1016/j.advengsoft.2009.07.006
- Ghannouchi, F.M., Hammi, O. and Helaoui, M. (2015), Behavioral Modelling and Predistortion of Wideband Wireless Transmitters, John Wiley & Sons.
- Gupta, R., Kewalramani, M. and Goel, A. (2006), "Prediction of concrete strength using neural-expert system", J. Mater. Civil Eng., 18(3), 462-466. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(462)
- Guyon, I. and Elisseeff, A. (2003), "An introduction to variable and feature selection", J. Mach. Learn. Res., 3, 1157-1182.
- Hadi, M.N.S. (2003), "Neural network applications in concrete structures", Comput. Struct., 81(6), 373-381. https://doi.org/10.1016/S0045-7949(02)00451-0
- Hajela, P. and Berke, L. (1991), "Neurobiological computational models in structural analysis and design", Comput. Struct., 41(4), 657-667. https://doi.org/10.1016/0045-7949(91)90178-O
- Hakim, S.J.S. and Abdul Razak, H. (2014), "Modal parameters based structural damage detection using artificial Neural networks-a review", Smart Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
- Han, J. and Kamber, M. (2005), Data Mining: Concepts and Techniques, 2nd Edition, Morgan and Kaufmann.
- Haykin, S. (1998), Neural Networks a Comprehensive Foundation, 2nd Edition, Prentice Hall.
- Hornik, K. (1991), "Approximation capabilities of multilayer feed-forward networks", Neural Netw., 4, 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- Indian Standard (2000), Plain and Reinforced Concrete-Code of Practice, Bureau of Indian Standards, Manak Bhawan, IS-456.
- Jain, A.K., Mao, J. and Mohiuddin, K.M. (1996), "Artificial neural networks: a tutorial", IEEE Comput., 31-44.
- Jakubek, M. (2012), "Neural network prediction of load capacity for eccentrically loaded reinforced concrete columns", Comput. Assist. Meth. Eng. Sci., 19, 339-349.
- Jasim, N.A. and Mohammed, M.Y. (2011), "Prediction of ultimate torsional strength of spandrel beams using Artificial Neural Networks", Basrah J. Eng. Sci., 11(1), 88-100.
- Joghataie, A. and Farrokh, M. (2008), "Dynamic analysis of nonlinear frames by Prandtl neural networks", J. Eng. Mech., 134(11), 961-969. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:11(961)
- Kameli, I., Miri, M. and Raji, A. (2011), "Prediction of target displacement of reinforced concrete frames using Artificial Neural Networks", Adv. Mater. Res., 255, 2345-2349.
- Kline, D.M. and Berardi, V.L. (2005), "Revisiting squared-error and cross-entropy functions for training neural network classifiers", Neural Comput. Appl., 14(4), 310-318. https://doi.org/10.1007/s00521-005-0467-y
- Lagaros, N.D. and Papadrakakis, M. (2012), "Neural network based prediction schemes of the non-linear seismic response of 3D buildings", Adv. Eng. Softw., 44(1), 92-115. https://doi.org/10.1016/j.advengsoft.2011.05.033
- Maren, A.J., Harston, C.T. and Pap, R.M. (2014), Handbook of Neural Computing Applications, Academic Press.
- Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Netw., 6(4), 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
- Mukherjee, A. and Despande, J.M. (1995), "Modeling initial design process using Artificial Neural Networks", J. Comput. Civil Eng., 9(3), 194-200. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:3(194)
- Pujari, A.K. (2001), Data Mining Techniques, 1st Edition, Universities Press, India.
- Richard, M.D. and Lippmann, R. (1991), "Neural network classifiers estimate Bayesian a posteriori probabilities", Neural Comput., 3, 461-483. https://doi.org/10.1162/neco.1991.3.4.461
- Schalkoff, R.J. (1997), Artificial Neural Networks, McGraw-Hill, New York.
- Sokolova, M. and Lapalme, G. (2009), "A systematic analysis of performance measures for classification tasks", Inform. Proc. Manage., 45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002
- Srivastava, S. Kr. and Singh, S. Kr. (2015), "Multi-parameter based performance evaluation of classification algorithms", Int. J. Comput. Sci. Inform. Tech., 7(3), 115-15. https://doi.org/10.5121/ijcsit.2015.7310
피인용 문헌
- Self-organizing mapping based swarm intelligence for secondary and tertiary proteins classification 2017, https://doi.org/10.1007/s13042-017-0710-8
- Automatic Indic script identification from handwritten documents: page, block, line and word-level approach 2019, https://doi.org/10.1007/s13042-017-0702-8
- An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural Network and Non-Local Mean Filter vol.5, pp.2, 2018, https://doi.org/10.4018/IJRSDA.2018040108
- Network Traffic Intrusion Detection System Using Fuzzy Logic and Neural Network vol.8, pp.1, 2017, https://doi.org/10.4018/IJSE.2017010101
- Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data 2018, https://doi.org/10.1007/s11517-017-1722-y
- Discrete wavelet transform-based freezing of gait detection in Parkinson’s disease pp.1362-3079, 2018, https://doi.org/10.1080/0952813X.2018.1519000
- Non-Dominated Sorting Genetic Algorithm-II-Induced Neural-Supported Prediction of Water Quality with Stability Analysis vol.17, pp.02, 2018, https://doi.org/10.1142/S0219649218500168
- Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm vol.63, pp.4, 2016, https://doi.org/10.12989/sem.2017.63.4.429
- Image Tampering Detection Using Convolutional Neural Network : vol.10, pp.1, 2016, https://doi.org/10.4018/ijse.2019010103
- Seamless Optimized LTE Based Mobile Polar Decoder Configuration for Efficient System Integration, Higher Capacity, and Extended Signal Coverage : vol.10, pp.3, 2019, https://doi.org/10.4018/ijamc.2019070104
- Segmentation of Leukemia Cells Using Clustering : A Comparative Study vol.10, pp.2, 2016, https://doi.org/10.4018/ijse.2019070103
- Multi-constrained optimization combining ARMAX with differential search for damage assessment vol.72, pp.6, 2016, https://doi.org/10.12989/sem.2019.72.6.689
- Practical optimization of power transmission towers using the RBF-based ABC algorithm vol.73, pp.4, 2016, https://doi.org/10.12989/sem.2020.73.4.463
- Emotions Recognition and Signal Classification : A State-of-the-Art vol.11, pp.1, 2016, https://doi.org/10.4018/ijse.2020010101
- Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633
- Neural network ensemble-based sensitivity analysis in structural engineering: Comparison of selected methods and the influence of statistical correlation vol.242, pp.None, 2016, https://doi.org/10.1016/j.compstruc.2020.106376