DOI QR코드

DOI QR Code

Dynamic behavior of the one-stage gear system with uncertainties

  • Beyaoui, M. (Department of Mechanical Engineering, National School of Engineers of Sfax) ;
  • Guerine, A. (Department of Mechanical Engineering, National School of Engineers of Sfax) ;
  • Walha, L. (Department of Mechanical Engineering, National School of Engineers of Sfax) ;
  • Hami, A. El (Department of Mechanical Engineering, INSA of Rouen) ;
  • Fakhfakh, T. (Department of Mechanical Engineering, National School of Engineers of Sfax) ;
  • Haddar, M. (Department of Mechanical Engineering, National School of Engineers of Sfax)
  • Received : 2015.01.01
  • Accepted : 2016.02.12
  • Published : 2016.05.10

Abstract

In this paper, we propose a method for taking into account uncertainties based on the projection on polynomial chaos. Due to the manufacturing and assembly errors, uncertainties in material and geometric properties, the system parameters including assembly defect, damping coefficients, bending stiffness and traction-compression stiffness are uncertain. The proposed method is used to determine the dynamic response of a one-stage spur gear system with uncertainty associated to gear system parameters. An analysis of the effect of these parameters on the one stage gear system dynamic behavior is then treated. The simulation results are obtained by the polynomial chaos method for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for uncertainty propagation. The polynomial chaos results are compared with Monte Carlo simulations.

Keywords

References

  1. Babuska, I., Tempone, R. and Zouraris, G.E. (2004), "Galerkin finite element approximation of stochastic elliptic partial differential equations", SIAM J. Scientif. Comput., 24, 619-644.
  2. Babuska, I., Nobile, F. and Tempone, R. (2007), "A stochastic collocation method for elliptic partial differential equations with random input data", SIAM J. Numer. Anal., 45, 1005-1034. https://doi.org/10.1137/050645142
  3. Begg, C.D., Byington, C.S. and Maynard, K. (2000), "Dynamic simulation of mechanical fault transition", Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, May.
  4. Blanchard, E., Sandu, A. and Sandu, C. (2009), "Parameter estimation for mechanical systems via an explicit representation of uncertainty", Int. J. Comput. Aid. Eng. Comput., 26, 541-569.
  5. Blanchard, E., Sandu, A., Sandu, C. (2010), "Polynomial chaos-based parameter estimation methods applied to vehicle system", Proc. Of the Institution of Mechanical Engineers Part K: J. of Multi-Body Dynamics. 224, 59-81.
  6. Crestaux, T., Le Maitre, O. and Martinez, J.M. (2009), "Polynomial chaos expansion for sensitivity analysis. Reliab", Eng. Syst. Saf., 94, 1161-1172. https://doi.org/10.1016/j.ress.2008.10.008
  7. Dalpiaz, G., Rivola, A. and Rubini, R. (1996), "Dynamic modeling of gear systems for condition monitoring and diagnostics", Congress on Technical Diagnostics.
  8. Dessombz, O. (2000), "Analyse dynamique de structures comportant des parametres incertains", Ph.D. Thesis, Ecole Centrale de Lyon, Lyon, France.
  9. El Hami, A., Lallement, G., Minottiand, P. and Cogan, S. (1993), "Methods that combine finite group theory with component mode synthesis in the analysis of repetitive structures", Int. J. Comput. Struct., 48, 975-982. https://doi.org/10.1016/0045-7949(93)90432-D
  10. El Hami, A. and Radi, B. (1996), "Some decomposition methods in the analysis of repetitive structures", Int. J. Comput. Struct., 58(5), 973-980. https://doi.org/10.1016/0045-7949(95)00206-V
  11. El Hami, A., Radi, B. and Cherouat, A. (2009), "The frictional contact of the shaping of the composite fabric. International", J. Math. Comput. Model., 49(7-8), 1337-1349. https://doi.org/10.1016/j.mcm.2008.09.016
  12. Fishman, G.S. (1996), Monte Carlo, Concepts, Algorithms and Applications, 1st Edition, Springer-Verlag.
  13. Ghanem, R.G. and Spanos, P.D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer Verlag.
  14. Guerine, A., El Hami, A., Fakhfakh, T. and Haddar, M. (2015a), "A polynomial chaos method to the analysis of the dynamic behavior of spur gear system", Struct. Eng. Mech., 53, 819-831. https://doi.org/10.12989/sem.2015.53.4.819
  15. Guerine, A., El Hami, A., Walha, L., Fakhfakh, T. and Haddar, M. (2015b), "A perturbation approach for the dynamic analysis of one stage gear system with uncertain nnparameters", Mech. Mach. Theory, 92, 113-126. https://doi.org/10.1016/j.mechmachtheory.2015.05.005
  16. Guerine, A., El Hami, A., Walha, L., Fakhfakh, T. and Haddar, M. (2016a), "A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system", Eur. J. Mech. A/Solid., doi:10.1016/j.euromechsol.2016.03.007.
  17. Guerine, A., El Hami, A., Walha, L., Fakhfakh, T. and Haddar, M. (2016b), "Dynamic response of a spur gear system with uncertain parameters", J. Theor. Appl. Mech. (Accepted for publication)
  18. Isukapalli, S.S., Roy, A. and Georgopoulos, P.G. (1998a), "Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems", Risk Anal., 18, 351-363. https://doi.org/10.1111/j.1539-6924.1998.tb01301.x
  19. Isukapalli, S.S., Roy, A. and Georgopoulos, P.G. (1998b), "Development and application of methods for assessing uncertainty in photochemical air quality problems", Interim Report for U.S.EPA National Exposure Research Laboratory.
  20. Le Maître, O.P., Knio, O.M., Najm, H.N. and Ghanem, R.G. (2001), "A stochastic projection method for fluid flow Basic formulation", J. Comput. Phys., 173, 481-511. https://doi.org/10.1006/jcph.2001.6889
  21. Lee, H.W., Sandu, C., Holton, C. (2012), "Stochastic analysis of the wheel-rail contact friction using the polynomial chaos theory", ASME J. Tribol., 134, 031601. https://doi.org/10.1115/1.4004877
  22. Li, R. and Ghanem, R. (1998), "Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration", Prob. Eng. Mech., 13, 125-136. https://doi.org/10.1016/S0266-8920(97)00020-9
  23. Lindsley, N.J. and Beran, P.S (2005), "Increased efficiency in the stochastic interrogation of an uncertinnonlinear aeroelastic system", International Forum on Aeroelasticity and Structural Dynamics, Munich, Germany, June.
  24. Mitchel, L.L.D. (1971), "Gear noise: the purchaser's and the manufacturer's view", Proceedings of the Noise Control Conference, Lafayette-Indiana, 95-106.
  25. Mohsine, A. and El Hami, A. (2010), "A robust study of reliability-based optimisation methods under eigenfrequency", Int. J. Comput. Meth. Appl. Mech. Eng., 199(17-20), 1006-1018. https://doi.org/10.1016/j.cma.2009.11.012
  26. Nechak, L., Berger, S. and Aubry, E. (2011), "A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems", Eur. J. Mech. A/Solid., 30, 594-607. https://doi.org/10.1016/j.euromechsol.2011.03.002
  27. Papadrakakis, M. and Papadopoulos, V. (1999), "Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation", Comput. Meth. Appl. Mech. Eng., 168, 305-320. https://doi.org/10.1016/S0045-7825(98)00147-9
  28. Pearce, W., Nielsen, M. and Rouverol, W. (1986), "Reducing gear noise excitation", Proceedings of the 2nd World Congress on Gearing, 1, 587-598.
  29. Radi, B. and El Hami, A. (2007), "Reliability analysis of the metal forming process", Int. J. Math. Comput. Model., 45(3-4), 431-439. https://doi.org/10.1016/j.mcm.2006.05.013
  30. Remond, D. (1991), "Contribution a l'etude et a l'analyse experimentale du bruit d'engrenement. Developpement et application de la transformee en ondelettes rapides", These de doctorat de l'INSA de Lyon $N^{\circ}$ 91 ISAL 0067.
  31. Saad, G., Ghanem, R. and Masri, S. (2007), "Robust system identification of strongly nonlinear dynamics using a polynomial chaos based sequential data assimilation technique", Structural Dynamics and Materials Conference, Honolulu, USA.
  32. Sandu, A., Sandu, C. and Ahmadian, M. (2006a), "Modeling multibody dynamic systems with uncertainties. Part I: numerical application", Multib. Syst. Dyn., 15, 369-391. https://doi.org/10.1007/s11044-006-9007-5
  33. Sandu, C., Sandu, A. and Ahmadian, M. (2006b), "Modeling multibody dynamic systems with uncertainties. Part II: theoretical and computational aspects", Multib. Syst. Dyn., 15, 241-262. https://doi.org/10.1007/s11044-006-9008-4
  34. Sarsri, D., Azrar, L., Jebbouri, A. and El Hami, A. (2011), "Component mode synthesis and polynomial chaos expansions for stochastic frequency functions of large linear FE models", Comput. Struct., 89(3-4), 346-356. https://doi.org/10.1016/j.compstruc.2010.11.009
  35. Smith, A.H.C., Monti, A. and Ponci, F. (2007), "Indirect measurements via a polynomial chaos observer", IEEE Tran. Instrum. Meas., 56, 743-752. https://doi.org/10.1109/TIM.2007.894914
  36. Walha, L., Fakhfakh, T. and Haddar, M. (2009), "Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash", Mech. Mach. Theory, 44, 1058-1069. https://doi.org/10.1016/j.mechmachtheory.2008.05.008
  37. Williams, M.M.R. (2006), "Polynomial chaos functions and stochastic differential equations", Ann. Nucl. Energy, 33, 774-785. https://doi.org/10.1016/j.anucene.2006.04.005
  38. Xiu, D. and Karniadakis, G.E. (2002a), "Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos", Comput. Meth. Appl. Mech. Eng., 191, 4927-4948. https://doi.org/10.1016/S0045-7825(02)00421-8
  39. Xiu, D. and Karniadakis, G.E. (2002b), "The Wiener-Askey polynomial chaos for stochastic differential equations", SIAM J. Scientif. Comput., 24, 619-644. https://doi.org/10.1137/S1064827501387826

Cited by

  1. Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method vol.113, 2017, https://doi.org/10.1016/j.renene.2017.06.028
  2. RBDO analysis of the aircraft wing based aerodynamic behavior vol.61, pp.4, 2017, https://doi.org/10.12989/sem.2017.61.4.441