DOI QR코드

DOI QR Code

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mahmoud, S.R. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2015.01.08
  • Accepted : 2016.02.05
  • Published : 2016.05.10

Abstract

In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

Keywords

Acknowledgement

Supported by : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)

References

  1. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Envir., 4(2), 59-64.
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  4. Ait Atmane, H., Tounsi, A. and Bernard, F. (2016), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des. (In press)
  5. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  6. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
  7. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  8. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 569-672.
  9. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  10. Bakora, A. and Tounsi, A. (2015)," Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
  11. Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates", Int. J. Mech. Sci., 75, 134-144. https://doi.org/10.1016/j.ijmecsci.2013.05.014
  12. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  13. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
  14. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  15. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  16. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  17. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  18. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higherorder shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888
  19. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223
  20. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  21. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  22. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  23. Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
  24. Bouhadra, A., Benyoucef, S., Tounsi, A., Bernard, F., Bachir Bouiadjra, R. and Houari, M.S.A. (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therm. Stress., 38, 630-650. https://doi.org/10.1080/01495739.2015.1015900
  25. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  26. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
  27. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  28. Bouremana, M, Houari, M.S.A, Tounsi, A, Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  29. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  30. Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates, and shells, McGraw-Hill, New York.
  31. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  32. Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., 55(3), 495-510. https://doi.org/10.12989/sem.2015.55.3.495
  33. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
  34. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  35. Cunedioglu, Y. (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech., 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003
  36. Darilmaz, K., (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395
  37. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  38. Ebrahimi, F. and Dashti, S. (2015)," Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279
  39. Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205
  40. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  41. Etemadi, E, Khatibi, AA. and Takaffoli, M. (2009), "3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact", Compos. Struct., 89, 28-34. https://doi.org/10.1016/j.compstruct.2008.06.013
  42. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  43. Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
  44. Hadji, L. and Adda Bedia, E.A. (2015a), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273
  45. Hadji, L. and Adda Bedia, E.A. (2015b), "Analyse of the behavior of Functionally graded beams based on neutral surface position", Struct. Eng. Mech., 55(4), 703-717. https://doi.org/10.12989/sem.2015.55.4.703
  46. Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and Adda Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315
  47. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  48. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  49. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 467-479.
  50. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct, 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
  51. Jiang, H.J., Dai, H.L. and Li, S.Z. (2015), "Refined plate theory for bending analysis of a HSLA steel plate under 3D temperature field", Appl. Math. Comput., 250, 497-513. https://doi.org/10.1016/j.amc.2014.10.122
  52. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
  53. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  54. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  55. Kiani, Y., Bagherizadeh, E. and Eslami, M.R. (2011), "Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three Approximate Analytical Solutions)", J. Appl. Math. Mech., 91(7), 581-593.
  56. Kirkland, B. and Uy, B. (2015), "Behaviour and design of composite beams subjected to flexure and axial load", Steel Compos. Struct., 19(3), 615-633. https://doi.org/10.12989/scs.2015.19.3.615
  57. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  58. Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
  59. Liang, X., Wu, Z., Wang, L., Liu, G., Wang, Z. and Zhang, W. (2015), "Semi-analytical three-dimensional solutions for the transient response of functionally graded material", ASCE J. Eng. Mech., 141(9), 1943-7889.
  60. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-d elasticity solutions", Int. J. Numer. Meth. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555
  61. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  62. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic behavior of advanced composite sandwich plates by using a new 6 unknown quasi-3D hybrid type HSDT", Compos. Struct., 126, 132-144. https://doi.org/10.1016/j.compstruct.2015.01.055
  63. Mantari, J.L. and Guedes Soares, C. (2014). "Four-unknown quasi-3D shear deformation theory for advanced composite plates", Compos. Struct., 109, 231-239. https://doi.org/10.1016/j.compstruct.2013.10.047
  64. Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68, 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010
  65. Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215
  66. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  67. Miamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R. G., (1999), Functionally graded materials: design, processing and applications, Kluwer Academic Publishers, Boston.
  68. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
  69. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006
  70. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  71. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  72. Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T. and Vu-Do, H.C. (2011), "Analysis of functionally graded plates using an edge-based smoothed finite element method", Compos. Struct., 93(11), 3019-2039. https://doi.org/10.1016/j.compstruct.2011.04.028
  73. Ould Larbi, L, Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  74. Ould Youcef, D., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
  75. Reddy, J.N. (1984), Energy principles and variational methods in applied mechanics, John Wiley, New York.
  76. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337
  77. Rahimi Pour, H., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  78. Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/scs.2015.19.4.829
  79. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Tech., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x
  80. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  81. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102
  82. Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
  83. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  84. Tagrara, S.H., Benachour, A., Bachir Bouiadjra, M. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  85. Tebboune, W., Benrahou, K.H., Houari, M.S.A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443
  86. Thai, H.T., Vo, T.P., Bui, T.Q. and Nguyen, T.K. (2014), "A quasi-3D hyperbolic shear deformation theory for functionally graded plates", Acta Mech, 225(3), 951-964. https://doi.org/10.1007/s00707-013-0994-z
  87. Thai, HT and Kim, SE. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99,172-180. https://doi.org/10.1016/j.compstruct.2012.11.030
  88. Thai, HT and Choi, DH. (2013), "Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates", Arch. Appl. Mech., 83(12), 1755-1771. https://doi.org/10.1007/s00419-013-0776-z
  89. Thai, HT and Choi, DH. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
  90. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  91. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  92. Wen, P.H., Sladek, J. and Sladek, V. (2011), "Three-dimensional analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 87(10), 923-942. https://doi.org/10.1002/nme.3139
  93. Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013), "Natural frequencies of sandwich plate with functionally graded face and homogeneous core", Compos. Struct., 96, 226-231. https://doi.org/10.1016/j.compstruct.2012.09.003
  94. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  95. Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. Part B, 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014
  96. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on postbuckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loading using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753
  97. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  98. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005
  99. Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E. A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates vol.132, 2017, https://doi.org/10.1016/j.matdes.2017.07.025
  2. Buckling optimization of variable-stiffness composite panels based on flow field function vol.181, 2017, https://doi.org/10.1016/j.compstruct.2017.08.081
  3. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  4. Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory vol.180, 2017, https://doi.org/10.1016/j.compstruct.2017.08.012
  5. Nonlinear bending of a two-dimensionally functionally graded beam vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.087
  6. Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.09.071
  7. Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation vol.40, pp.2, 2017, https://doi.org/10.1080/01495739.2016.1229146
  8. Equivalent property between the one-half order and first-order shear deformation theories under the simply supported boundary conditions vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.005
  9. A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.029
  10. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
  11. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method 2018, https://doi.org/10.1016/j.aej.2017.06.001
  12. Thermal buckling analysis of functionally graded sandwich plates vol.41, pp.2, 2018, https://doi.org/10.1080/01495739.2017.1393644
  13. Eigenvalue approach to two dimensional coupled magneto-thermoelasticity in a rotating isotropic medium vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.07.053
  14. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
  15. Exact solutions for coupled responses of thin-walled FG sandwich beams with non-symmetric cross-sections vol.122, 2017, https://doi.org/10.1016/j.compositesb.2017.04.016
  16. An analytical method for free vibration analysis of functionally graded sandwich beams vol.23, pp.1, 2016, https://doi.org/10.12989/was.2016.23.1.059
  17. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0322-2
  18. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  19. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  20. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations 2017, https://doi.org/10.1177/1099636217727577
  21. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates vol.132, pp.10, 2017, https://doi.org/10.1140/epjp/i2017-11666-6
  22. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
  23. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
  24. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading vol.109, 2017, https://doi.org/10.1016/j.compositesb.2016.10.050
  25. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  26. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium vol.47, pp.6, 2017, https://doi.org/10.1007/s13538-017-0524-x
  27. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  28. Dynamic buckling of polymer–carbon nanotube–fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments 2017, https://doi.org/10.1177/1099636217743288
  29. A novel four variable refined plate theory for laminated composite plates vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.713
  30. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  31. Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO 2 nanoparticles and fiber reinforced polymer (FRP) layer vol.103, 2017, https://doi.org/10.1016/j.soildyn.2017.09.009
  32. Hygro-thermo-mechanical behavior of classical composites using a new trigonometrical shear strain shape function and a compact layerwise approach vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.014
  33. Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions vol.73, 2017, https://doi.org/10.1016/j.jfluidstructs.2017.06.007
  34. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation vol.72, 2018, https://doi.org/10.1016/j.ast.2017.11.004
  35. Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects vol.187, 2018, https://doi.org/10.1016/j.compstruct.2017.12.004
  36. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  37. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  38. Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments vol.124, 2018, https://doi.org/10.1016/j.tws.2017.12.005
  39. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
  40. Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
  41. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.052
  42. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  43. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium vol.8, 2018, https://doi.org/10.1016/j.rinp.2017.09.021
  44. Dynamic response of multiple nanobeam system under a moving nanoparticle 2017, https://doi.org/10.1016/j.aej.2016.12.015
  45. Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity vol.09, pp.05, 2017, https://doi.org/10.1142/S1758825117500764
  46. Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory pp.2041-2983, 2019, https://doi.org/10.1177/0954406218756451
  47. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1444216
  48. Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: A state-of-the-art review including smart FGMS pp.1548-0046, 2018, https://doi.org/10.1080/02726351.2017.1410265
  49. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  50. On buckling and free vibration studies of sandwich plates and cylindrical shells pp.1530-7980, 2018, https://doi.org/10.1177/0892705718809810
  51. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0669-4
  52. Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0646-y
  53. Nonlinear static response analysis of sandwich beams using the Refined Zigzag Theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218795381
  54. Impulsive Response of Rectangular Metal Sandwich Plate with a Graded Foam Core vol.10, pp.06, 2018, https://doi.org/10.1142/S1758825118500643
  55. Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad4c3
  56. Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
  57. Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media vol.29, pp.11, 2018, https://doi.org/10.1177/1045389X18770856
  58. Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezo-magneto-elasticity theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218760667
  59. Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1452169
  60. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
  61. Vibration of thermally postbuckled FG-GRC laminated plates resting on elastic foundations pp.1741-2986, 2019, https://doi.org/10.1177/1077546319825671
  62. An analytical approach for buckling of functionally graded plates vol.5, pp.3, 2016, https://doi.org/10.12989/amr.2016.5.3.141
  63. Hygrothermal effects on buckling of composite shell-experimental and FEM results vol.22, pp.6, 2016, https://doi.org/10.12989/scs.2016.22.6.1445
  64. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
  65. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  66. A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.317
  67. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2016, https://doi.org/10.12989/sss.2017.19.3.289
  68. Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2016, https://doi.org/10.12989/sem.2017.62.2.143
  69. Analysis of functionally graded plates using a sinusoidal shear deformation theory vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.441
  70. A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
  71. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  72. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2016, https://doi.org/10.12989/sss.2017.19.6.601
  73. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  74. Free vibrations of laminated composite plates using a novel four variable refined plate theory vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.603
  75. Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory vol.63, pp.3, 2016, https://doi.org/10.12989/sem.2017.63.3.401
  76. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2016, https://doi.org/10.12989/cac.2017.20.2.229
  77. An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
  78. Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory vol.63, pp.4, 2016, https://doi.org/10.12989/sem.2017.63.4.471
  79. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2016, https://doi.org/10.12989/sem.2017.63.5.585
  80. An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2016, https://doi.org/10.12989/eas.2017.13.3.255
  81. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  82. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.369
  83. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
  84. Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.093
  85. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.121
  86. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2016, https://doi.org/10.12989/sem.2017.64.2.145
  87. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  88. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  89. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  90. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2016, https://doi.org/10.12989/eas.2017.13.5.509
  91. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2016, https://doi.org/10.12989/sem.2017.64.4.391
  92. Vibration analysis of micro composite thin beam based on modified couple stress vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.403
  93. Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.595
  94. Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.683
  95. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  96. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
  97. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.717
  98. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
  99. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103
  100. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2016, https://doi.org/10.12989/sem.2018.65.5.621
  101. Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
  102. Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core vol.65, pp.6, 2016, https://doi.org/10.12989/sem.2018.65.6.657
  103. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  104. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.027
  105. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.061
  106. Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects vol.21, pp.4, 2018, https://doi.org/10.12989/cac.2018.21.4.431
  107. Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2016, https://doi.org/10.12989/sem.2018.66.2.249
  108. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
  109. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
  110. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  111. Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.317
  112. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.353
  113. A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.369
  114. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.711
  115. Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation vol.21, pp.5, 2018, https://doi.org/10.12989/cac.2018.21.5.569
  116. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2016, https://doi.org/10.12989/scs.2018.27.4.465
  117. Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
  118. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.599
  119. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2016, https://doi.org/10.12989/anr.2018.6.2.147
  120. Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials vol.27, pp.6, 2016, https://doi.org/10.12989/scs.2018.27.6.777
  121. Quasi-3D static analysis of two-directional functionally graded circular plates vol.27, pp.6, 2016, https://doi.org/10.12989/scs.2018.27.6.789
  122. Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2016, https://doi.org/10.12989/sem.2018.66.6.729
  123. Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.761
  124. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  125. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.013
  126. Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2016, https://doi.org/10.12989/sem.2018.67.1.021
  127. Technical and economical assessment of applying silica nanoparticles for construction of concrete structures vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.117
  128. The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.115
  129. Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory vol.22, pp.1, 2016, https://doi.org/10.12989/sss.2018.22.1.027
  130. Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.121
  131. Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory vol.28, pp.3, 2016, https://doi.org/10.12989/scs.2018.28.3.381
  132. A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.219
  133. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.291
  134. Numerical study for vibration response of concrete beams reinforced by nanoparticles vol.67, pp.3, 2018, https://doi.org/10.12989/sem.2018.67.3.311
  135. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2016, https://doi.org/10.12989/sem.2018.67.4.369
  136. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.517
  137. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  138. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  139. Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory vol.15, pp.3, 2016, https://doi.org/10.12989/eas.2018.15.3.285
  140. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/sss.2018.22.3.303
  141. Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2016, https://doi.org/10.12989/eas.2018.15.4.361
  142. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.247
  143. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.247
  144. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.269
  145. Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position vol.5, pp.6, 2016, https://doi.org/10.12989/aas.2018.5.6.691
  146. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.527
  147. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  148. Critical buckling loads of carbon nanotube embedded in Kerr's medium vol.6, pp.4, 2016, https://doi.org/10.12989/anr.2018.6.4.339
  149. Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
  150. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2016, https://doi.org/10.12989/scs.2019.30.1.013
  151. Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
  152. Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel vol.16, pp.1, 2016, https://doi.org/10.12989/eas.2019.16.1.055
  153. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method vol.69, pp.2, 2016, https://doi.org/10.12989/sem.2019.69.2.205
  154. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.019
  155. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.049
  156. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections vol.17, pp.2, 2019, https://doi.org/10.12989/gae.2019.17.2.175
  157. Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load vol.7, pp.1, 2016, https://doi.org/10.12989/acc.2019.7.1.051
  158. Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory vol.16, pp.2, 2019, https://doi.org/10.12989/eas.2019.16.2.177
  159. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.511
  160. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2016, https://doi.org/10.12989/anr.2019.7.2.089
  161. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2016, https://doi.org/10.12989/sem.2019.69.6.637
  162. Free Vibration Analysis of Composite Material Plates "Case of a Typical Functionally Graded FG Plates Ceramic/Metal" with Porosities vol.25, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/nhc.25.69
  163. The (small) vibrations of thin plates vol.32, pp.4, 2016, https://doi.org/10.1088/1361-6544/aaf3eb
  164. Buckling behavior of rectangular plates under uniaxial and biaxial compression vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.113
  165. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  166. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2016, https://doi.org/10.12989/anr.2019.7.3.191
  167. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2016, https://doi.org/10.12989/gae.2019.18.2.161
  168. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2016, https://doi.org/10.12989/scs.2019.31.5.503
  169. Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
  170. Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.601
  171. Chaotic dynamics of a non-autonomous nonlinear system for a smart composite shell subjected to the hygro-thermal environment vol.25, pp.7, 2019, https://doi.org/10.1007/s00542-018-4206-6
  172. Stability analysis of embedded graphene platelets reinforced composite plates in thermal environment vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12581-6
  173. Dynamic analysis of multi-layered composite beams reinforced with graphene platelets resting on two-parameter viscoelastic foundation vol.134, pp.7, 2016, https://doi.org/10.1140/epjp/i2019-12739-2
  174. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  175. Static analysis of monoclinic plates via a three-dimensional model using differential quadrature method vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.131
  176. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2016, https://doi.org/10.12989/cac.2019.24.4.347
  177. The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory vol.7, pp.6, 2016, https://doi.org/10.12989/anr.2019.7.6.443
  178. Dynamic modeling of a multi-scale sandwich composite panel containing flexible core and MR smart layer vol.134, pp.12, 2016, https://doi.org/10.1140/epjp/i2019-12662-6
  179. An analytical investigation of elastic-plastic deformation of FGM hollow rotors under a high centrifugal effect vol.14, pp.1, 2019, https://doi.org/10.1186/s40712-019-0112-7
  180. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  181. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
  182. Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
  183. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  184. Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects vol.7, pp.2, 2016, https://doi.org/10.12989/aas.2020.7.2.169
  185. A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams vol.9, pp.1, 2016, https://doi.org/10.12989/amr.2020.9.1.033
  186. Buckling response of functionally graded nanoplates under combined thermal and mechanical loadings vol.22, pp.4, 2020, https://doi.org/10.1007/s11051-020-04815-9
  187. Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.083
  188. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  189. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.203
  190. Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.175
  191. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.409
  192. Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
  193. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2016, https://doi.org/10.12989/csm.2020.9.3.281
  194. Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach vol.7, pp.2, 2016, https://doi.org/10.12989/smm.2020.7.2.069
  195. Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates vol.36, pp.3, 2016, https://doi.org/10.1007/s00366-019-00737-w
  196. Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures vol.36, pp.3, 2016, https://doi.org/10.1007/s00366-019-00742-z
  197. Fractional derivative for interpolation in R n and SO(n) applications in functionally graded materials and rigid body transformations vol.378, pp.None, 2016, https://doi.org/10.1016/j.cam.2020.112937
  198. Higher-order semi-layerwise models for doubly curved delaminated composite shells vol.91, pp.1, 2021, https://doi.org/10.1007/s00419-020-01755-7
  199. Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds vol.49, pp.1, 2016, https://doi.org/10.1080/15397734.2019.1652833
  200. Geometrical Influences on the Vibration of Layered Plates vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/8843358
  201. Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory vol.23, pp.3, 2016, https://doi.org/10.1177/1099636219845841
  202. Buckling and free vibration characteristics of embedded inhomogeneous functionally graded elliptical plate in hygrothermal environment vol.235, pp.5, 2016, https://doi.org/10.1177/1464420720986899
  203. Modeling of memory-dependent derivative in a functionally graded plate vol.31, pp.4, 2016, https://doi.org/10.1080/17455030.2019.1606962
  204. Wave dispersion of nanobeams incorporating stretching effect vol.31, pp.4, 2016, https://doi.org/10.1080/17455030.2019.1607623
  205. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  206. Analytical solutions for laminated beams subjected to non-uniform temperature boundary conditions vol.282, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.115044