References
- Al Assaf C, Van Obbergh F, Billiet J, et al (2015). Analysis of phenotype and outcome in essential thrombocythemia with CALR or JAK2 mutations. Haematologica, 100, 893-7. https://doi.org/10.3324/haematol.2014.118299
- Fu R, Xuan M, Zhou Y, et al (2014). Analysis of CALReticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment. Leukemia, 28, 1912-4. https://doi.org/10.1038/leu.2014.138
- Guglielmelli P, Nangalia J, Green AR, et al (2014). CALR mutations in myeloproliferative neoplasms: Hidden behind the reticulum. Am J Hematol, 89, 453-6. https://doi.org/10.1002/ajh.23678
- Ha JS, Kim YK (2015). CALReticulin exon 9 mutations in myeloproliferative neoplasms. Ann Lab Med, 35, 22-7. https://doi.org/10.3343/alm.2015.35.1.22
- Klampfl T, Gisslinger H, Harutyunyan AS, et al (2013). Somatic mutations of CALReticulin in myeloproliferative neoplasms. New Engl J Med, 369, 2379-90. https://doi.org/10.1056/NEJMoa1311347
- Kralovics R (2008). Genetic complexity of myeloproliferative neoplasms. Leukemia, 22, 1841-8. https://doi.org/10.1038/leu.2008.233
- Lim KH, Chang YC, Gon-Shen CC, et al (2015). Frequent CALR exon 9 alterations in JAK2 V617F-mutated essential thrombocythemia detected by high-resolution melting analysis. Blood Cancer J, 5, 295. https://doi.org/10.1038/bcj.2015.21
- Lin Y, Liu E, Sun Q, et al (2015). The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Path, 144, 165-71. https://doi.org/10.1309/AJCPALP51XDIXDDV
- Lundberg P, Karow A, Nienhold R, et al (2014). Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood, 123, 2220-8. https://doi.org/10.1182/blood-2013-11-537167
- McGaffin G, Harper K, Stirling D, McLintock L (2014). JAK2 V617F and CALR mutations are not mutually exclusive; findings from retrospective analysis of a small patient cohort. Br J Haematol, 167, 276-8. https://doi.org/10.1111/bjh.12969
- Nangalia J, Massie CE, Baxter EJ, et al (2013). Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. New Engl J Med, 369, 2391-405. https://doi.org/10.1056/NEJMoa1312542
- Rashid M, Ahmed RZ, Ahmed S, et al (2015). Coexisting JAK2 V617F and CALR exon 9 mutation in essential thrombocythemia. 2015 ASH Meeting on Hematologic Malignancies, 56.
- Rotunno G, Mannarelli C, Guglielmelli P, et al (2014). Impact of CALReticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood, 123, 1552-5. https://doi.org/10.1182/blood-2013-11-538983
- Shirane S, Araki M, Morishita S, et al (2015). JAK2, CALR, and MPL mutation spectrum in Japanese patients with myeloproliferative neoplasms. Haematologica, 100, e46-8. https://doi.org/10.3324/haematol.2014.115113
- Tafferi A, Pardanani A (2014).CALR mutations and a new diagnostic algorithm for MPN. Nat Rev ClinOncol, 11, 125-6.
- Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia, 24, 1128-38. https://doi.org/10.1038/leu.2010.69
- Tefferi A, Lasho TL, Finke CM, et al (2014a).CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia, 28, 1472-7. https://doi.org/10.1038/leu.2014.3
- Tefferi A, Lasho TL, Tischer A, et al (2014b). The prognostic advantage of CALReticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood, 124, 2465-6. https://doi.org/10.1182/blood-2014-07-588426
- Tefferi A, Thiele J, Vannuccji AM, et al (2014c). An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia, 28, 1407-13. https://doi.org/10.1038/leu.2014.35
- Vainchenker W, Delhommeau F, Constantinescu SN, et al (2011). New mutations and pathogenesis of myeloproliferative neoplasms. Blood, 118, 1723-35. https://doi.org/10.1182/blood-2011-02-292102
- Vardiman JW, Thiele J, Arber DA, et al (2009). The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 114, 937-51. https://doi.org/10.1182/blood-2009-03-209262
- Wu Z, Zhang X, Xu X, et al (2014). The mutation profile of JAK2 and CARL in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms. J Hematol Oncol, 7, 1-10. https://doi.org/10.1186/1756-8722-7-1
- Xu N, Ding L, Yin C, et al (2015). A report on the co-occurrence of JAK2V617F and CALR mutations in myeloproliferative neoplasm patients. Ann Hematol, 94, 865-7. https://doi.org/10.1007/s00277-014-2248-0
- Zamora L, Xicoy B, Cabezon M, et al (2015). Co-existence of JAK2 V617F and CALR mutations in primary myelofibrosis. Leuk Lymphoma, 11, 1-2.
Cited by
- Parallel algorithm for myeloproliferative neoplasms testing: the frequency of double mutations is found in the JAK2/MPL genes more often than the JAK2/CALR genes, but is there a clinical benefit? vol.0, pp.0, 2019, https://doi.org/10.1515/cclm-2018-0232