Abstract
This paper presents a threat list acquisition method in an engagement area using the support vector machines (SVM). The proposed method consists of track creation, track estimation, track feature extraction, and threat list classification. To classify the threat track robustly, dynamic track estimation and pattern recognition algorithms are used. Dynamic tracks are estimated accurately by approximating a track movement using position, velocity and time. After track estimation, track features are extracted from the track information, and used to classify threat list. Experimental results showed that the threat list acquisition method in the engagement area achieved about 95 % accuracy rate for whole test tracks when using the SVM classifier. In case of improving the real-time process through further studies, it can be expected to apply the fire control systems.