International Research Trends of Engineering Education in Secondary School Level : Focus on the Technology Education Related Journals

국외 중등 공학 교육 연구 동향 분석 : 기술 교육 관련 학술지를 중심으로

  • Received : 2016.01.25
  • Accepted : 2016.03.27
  • Published : 2016.03.31

Abstract

This study analyzed the international research trend of the secondary school level engineering education published from 2004 to 2014 in four major journals associated with technology education. The findings of this study were as followings First, regarding the published year, the studies related to the secondary school level engineering education were started from 2004 and had been conducted most actively from 2007 to 2011 (32 pieces). However, the number of studies decreased after 2012. Second, regarding the research topic, the number of study followed by 'survey/investigation' (16 pieces), 'establishment of concept/theoretical discussion' (11 pieces), 'verification of teaching method/models' effect' (10 pieces), 'teaching method/model observation' (7 pieces), 'development of concept/teaching method/model' (4 pieces). Third, regarding the research subject, the number of study followed by 'high school student' (17 pieces), 'literature' (16 pieces), 'teacher' (12 pieces), 'professor' (5 pieces). Fourth, regarding the research method, the number of study followed by 'survey research' (13 pieces), 'literature research' (12 pieces), 'qualitative research' (12 pieces), 'experimental research' (6 pieces), 'integrated research' (5 pieces). Based on the conclusion of this study, there are the needs for further studies to establish theoretical foundation on the engineering concept and content elements in secondary school level, investigate technology teachers' perception toward the implementation of engineering education, and analyze secondary school students' problem solving process.

이 연구에서는 2004년에서 2014년까지 기술 교육 관련 국외 학술지 4종에 게재된 논문을 대상으로 중등 공학 교육 연구 동향을 분석하였으며, 연구의 결과는 다음과 같다. 첫째, 연도별로 보면, 2004년부터 관련 연구가 시작되었으며, 2007~2011년 사이에 가장 활발한 연구가 이루어지다가(32편) 이후 관련 연구의 수가 감소하고 있었다. 둘째, 연구 주제별 보면 '의견/현황 조사'(16편), '개념 정립/이론 논의'(11편), '교수방법/모형 효과 검증'(10편), '교수방법/모형 관찰'(7편), '개념/교수방법/모형 구안'(4편) 등의 순으로 연구가 수행되었다. 셋째, 연구 대상별로 보면 '고등학생'(17편), '문헌'(16편), '교사'(12편), '전문가'(5편) 등의 순으로 연구가 수행되었다. 넷째, 연구 방법별로 보면 '조사연구'(13편), '문헌연구'(12편), '질적연구'(12편), '실험연구'(6편), '혼합연구'(5편) 등의 순으로 연구가 수행되었다. 이에 대한 제언으로 중등학교 수준의 공학 개념이나 내용 요소에 대해 이론적으로 고찰한 연구, 기술 교육에서 공학이 다루어지는 것에 대해 기술 교사의 인식을 조사하는 연구, 중등학생의 공학 문제 해결 과정을 분석하는 질적 연구 등이 수행될 필요가 있다.

Keywords

References

  1. 교육과학기술부(2011). 실과(기술.가정) 교육과정. 저자.
  2. 교육인적자원부(2007). 실과(기술.가정) 교육과정. 저자.
  3. 김상림, 안효진, 이시자(2011). 유아 다문화 교육 관련 연구동향 분석 : 국내 학술지를 중심으로. 한국보육학회지, 11(2), 147-171.
  4. 김영민 외(2013). 공학 기술 교육 프로그램 참가자의 인식 변화에 관한 질적연구. 실과교육연구, 19(4), 271-295.
  5. 김영희, 허철수(2012). 중.고등학교 학업중단 청소년에 관한 연구동향 분석. 상담학연구, 13(2), 1013-1028.
  6. 김용익(2007). 두 개의 국제 전문 학술지 분석을 통해서 본 기술교과 교육 연구 동향 : 1997-2006. 한국기술교육학회지, 7(3), 49-73.
  7. 김진수(2007). 기술교육의 새로운 통합교육 방법인 STEM 교육의 탐색. 한국기술교육학회지, 7(3), 1-29.
  8. 김진수(2011). STEAM 교육을 위한 큐빅 모형. 한국기술교육학회지, 11(2), 124-139.
  9. 김태훈, 노태천(2007). 효율적인 문제해결자와 비효율적인 문제해결자의 기술적 문제해결 활동 비교 분석. 공학교육연구, 10(3), 93-108.
  10. 노태천 외(2013). 공학교육방법 및 프로그램 : "공학교육연구" 논문지의 공학교육 연구 동향 분석. 공학교육연구, 16(1), 45-53.
  11. 박상완(2014). 현직교사교육 연구 동향 분석: 특징과 과제. 한국교원교육연구, 31(2). 227-254.
  12. 방선희(2011). 비판적 사고 교육의 국내 연구동향과 시사점. 평생학습사회, 7(1), 61-83.
  13. 송현순(2001). 초등학생의 실과 문제해결 전략에 대한 미시발생학적 분석. 실과교육연구, 7(1), 129-146.
  14. 이기용, 이건남(2013). 국내 학술지에 게재된 초등 다문화교육 관련 연구의 동향 분석. 실과교육연구, 19(4). 297-317.
  15. 이은상(2015). 국내 초, 중등 공학 교육 연구 동향 분석. 공학교육연구, 18(4), 45-56.
  16. 이지연(2014). 중학생 대상 체험학습 국내 연구동향 분석. 학습자중심교과교육연구, 14(11). 199-219.
  17. 임윤묵(2004). 미국 공학교육의 최근 동향. 공학교육, 11(3), 50-52.
  18. 임철일 외(2014). 국내 공학교육에서의 창의성 연구 동향과 발전 과제. 공학교육연구, 17(5), 33-40.
  19. 정준오, 최선미(2013). 한국과 미국의 공학교육 연구주제의 동향 분석(1); 한,미 공학교육학회지 투고논문을 중심으로. 공학교육연구, 16(2), 37-49.
  20. 조욱상, 김종욱, 김정규(2014). 창의성 개발을 위한 체육 교육 연구동향 분석. 학습자중심교과교육연구, 14(12), 349-378.
  21. 한국기술교육학회(2011). 기술교육과 공학교육의 방향, 2011 한국기술교육학회 동계 학술대회. 저자.
  22. Adams, R. S., Turns, J., & Atman, C. J. (2003). Educating effective engineering designers: The role of reflective practice. Design studies, 24(3), 275-294. https://doi.org/10.1016/S0142-694X(02)00056-X
  23. Asunda, P. A., & Hill, R. B. (2007). Critical features of engineering design in technology education. Journal of Industrial Teacher Education, 44(1), 25-48.
  24. Atman, C. J., et al. (1999). A comparison of freshman and senior engineering design processes. Design Studies, 20(2), 131-152. https://doi.org/10.1016/S0142-694X(98)00031-3
  25. Atman, C. J., et al. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379. https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
  26. Brown, P., & Borrego, M. (2013). Engineering efforts and opportunities in the national science foundation's math and science partnerships (MSP) program. Journal of Technology Education, 24(2), 41-54.
  27. Childress, V. & Rhodes, C., (2010). Engineering student outcomes for infusion into technological literacy programs: Grades 9-12. Journal of Technology Education, 21(2), 69-83.
  28. Custer, R. L., Daugherty, J. L., & Meyer, J. P. (2010). Formulating a concept base for secondary level engineering: A review and synthesis. Journal of Technology Education, 22(1), 4-21.
  29. Daugherty, J. L. (2009). Engineering professional development design for secondary school teachers: A multiple case study. Journal of Technology Education, 21(1), 10-24.
  30. Daugherty, J. L., & Custer, R. L. (2012). Secondary level engineering professional development: Content, pedagogy, and challenges. International journal of technology and design education, 22(1), 51-64. https://doi.org/10.1007/s10798-010-9136-2
  31. Dave, V., et al. (2010). Re-enJEANeering STEM Education: Math options summer camp. Journal of Technology Studies, 36(1), 35-45.
  32. Daugherty, J. L., Reese, G. C., & Merrill, C. (2010). Trajectories of mathematics and technology education pointing to engineering design. Journal of Technology Studies, 36(1), 46-52.
  33. Dearing, B. M. & Daugherty, M. K. (2004). Delivering engineering content in technology education. The Technology Teacher, 64(3), 8-11.
  34. Denson, C. D., & Hill, R. B. (2010). Impact of an engineering mentorship program on African-American male high school students' perceptions and self-efficacy. Journal of Industrial Teacher Education, 47(1), 99-127.
  35. Denson, C. D., Kelley, T. R., & Wicklein, R. C. (2009). Integrating engineering design into technology education: Georgia's perspective. Journal of Industrial Teacher Education, 46(1), 81-102.
  36. Dixon, R. A., & Brown, R. A. (2012). Transfer of Learning: Connecting Concepts during Problem Solving. Journal of Technology Education, 24(1), 2-17.
  37. Douglas J., Iversen, E., & Kalyandurg, C. (2004). Engineering in the K-12 classroom: An analysis of current practices and guidelines for the future. ASEE Engineering K12 Center.
  38. Fantz, T. D., & Katsioloudis, P. J. (2011). Analysis of engineering content within technology education programs. Journal of Technology Education, 23(1), 19-31.
  39. Fantz, T. D., De Miranda, M. A., & Siller, T. J. (2011). Knowing what engineering and technology teachers need to know: an analysis of pre-service teachers engineering design problems. International Journal of Technology and Design Education, 21(3), 307-320. https://doi.org/10.1007/s10798-010-9121-9
  40. Gattie, D. K., & Wicklein, R. C. (2007). Curricular value and instructional needs for infusing engineering design into K-12 technology education. Journal of Technology Education, 19(1), 6-18.
  41. Gorham, D. (2002). Engineering and standards for technological literacy. The Technology Teacher, 61(7), 29-34.
  42. Gorham, D., Newberry, P. B., & Bickart, T. A. (2003). Engineering accreditation and standards for technological literacy. Journal of Engineering Education, 92(1), 95-99. https://doi.org/10.1002/j.2168-9830.2003.tb00744.x
  43. Harris, K. S., & Rogers, G. E. (2008). Secondary engineering competencies: A delphi study of engineering faculty. Journal of Industrial Teacher Education, 45(1), 5-25.
  44. Hill, R. B. (2006). New perspectives: Technology teacher education and engineering design. Journal of Industrial Teacher Education, 43(3), 45-63.
  45. International Technology Education Association. (2000). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
  46. Katehi, L., Pearson, G., & Feder, M.(Eds.) (2009). National Academy of Engineering and National Research Council. Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: National Academies Press.
  47. Kelley, T. R. (2008). Cognitive processes of students participating in engineering-focused design instruction. Journal of Technology Education, 19(2), 50-64.
  48. Kelley, T. R. (2010). Staking the claim for the" T" in STEM. Journal of Technology Studies, 36(1), 2-11.
  49. Kelley, T. R., & Wicklein, R. C. (2009a). Examination of assessment practices for engineering design projects in secondary technology education (first article in 3-part series). Journal of Industrial Teacher Education, 46(1), 6-31.
  50. Kelley, T. R., & Wicklein, R. C. (2009b). Examination of assessment practices for engineering design projects in secondary technology education (second article in 3-part series). Journal of Industrial Teacher Education, 46(2), 6-25.
  51. Kelley, T. R., & Wicklein, R. C. (2009c). Teacher challenges to implement engineering design in secondary technology education. Journal of Industrial Teacher Education, 46(3), 34-50.
  52. Kelley, T. R., Brenner, D. C., & Pieper, J. T. (2010). Two approaches to engineering design : Observations in sTEm education. Journal of sTEm Teacher Education, 47(2), 5-40.
  53. Lammi, M., & Becker, K. (2013). Engineering design thinking. Journal of Technology Education, 24(2), 55-77.
  54. Lawanto, O., & Stewardson, G. (2013). Students' interest and expectancy for success while engaged in analysis-and creative design activities. International Journal of Technology and Design Education, 23(2), 213-227. https://doi.org/10.1007/s10798-011-9175-3
  55. Lewis, T. (2004). A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education, 16(1), 21-39.
  56. Lewis, T. (2005). Coming to terms with engineering design as content. Journal of Technology Education, 16(2), 37-54.
  57. Mentzer, N. (2014). Team based engineering design thinking. Journal of Technology Education, 25(2), 52-72.
  58. Mentzer, N., & Becker, K. (2009). Motivation while designing in engineering and technology education impacted by academic preparation. Journal of Industrial Teacher Education, 46(3), 90-112.
  59. Mentzer, N., Huffman, T., & Thayer, H. (2014). High school student modeling in the engineering design process. International Journal of Technology and Design Education, 24(3), 293-316. https://doi.org/10.1007/s10798-013-9260-x
  60. Merrill, C., et al. (2008). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64.
  61. Pieper, J., & Mentzer, N. (2013). High school students' use of paper-based and internet-based information sources in the engineering design process. Journal of Technology Education, 24(2), 78-95.
  62. Pinelli, T. E., & Haynie, W. J. (2010). A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21(2), 52-68.
  63. Rockland, R., et al. (2010). Advancing the "E" in K-12 STEM education. Journal of Technology Studies, 36(1), 53-64.
  64. Rogers, G. E. (2005). Pre-engineering's place in technology education and its effect on technological literacy as perceived by technology education. Journal of Industrial Teacher Education, 42(3), 6-22.
  65. Rogers, G. E. (2006). The effectiveness of project lead the way curricula in developing pre-engineering competencies as perceived by Indiana teachers. Journal of Technology Education, 18(1), 66-78.
  66. Rogers, G. E. (2007). The perceptions of Indiana high school principals related to project lead the way. Journal of Industrial Teacher Education, 44(1), 49-65.
  67. Rogers, S., & Rogers, G. E. (2005). Technology education benefits from the inclusion of pre-engineering education. Journal of Industrial Teacher Education, 42(3), 88-95.
  68. Salas-Morera, L., et al. (2013). Improving engineering skills in high school students: a partnership between university and K-12 teachers. International Journal of Technology and Design Education, 23(4), 903-920. https://doi.org/10.1007/s10798-012-9223-7
  69. Salinger, G. L. (2005). The engineering of technology education. Journal of Technology Studies, 31(1), 2-6.
  70. Sherman, T. M., Sanders, M., & Kwon, H. (2010). Teaching in middle school technology education: A review of recent practices. International Journal of Technology and Design Education, 20(4), 367-379. https://doi.org/10.1007/s10798-009-9090-z
  71. Shields, C. J. (2007). Barriers to the implementation of project lead the way as perceived by Indiana high school principals. Journal of Industrial Teacher Education, 44(3), 43-70.
  72. Werner, G., Kelley, T. R., & Rogers, G. E. (2011). Perceptions of Indiana parents related to project lead the way. Journal of sTEm Teacher Education, 48(2), 137-154.
  73. Wicklein, R., Smith, P. C., Jr., & Kim, S. J. (2009). Essential concepts of engineering design curriculum in secondary technology education. Journal of Technology Education, 20(2), 65-80.
  74. Wicklein, R. C. (2006). 5 Good reasons for engineering design as the focus for technology education. The Technology Teacher, 65(7), 25-29.