References
- Ahmad ZK, Brown CM, Cueva RA, Ryan AF, Doherty JK : ErbB expression, activation, and inhibition with lapatinib and tyrphostin (AG825) in human vestibular schwannomas. Otol Neurotol 32 : 841-847, 2011 https://doi.org/10.1097/MAO.0b013e31821f7d88
- Andreiuolo F, Puget S, Peyre M, Dantas-Barbosa C, Boddaert N, Philippe C, et al. : Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol 12 : 1126-1134, 2010 https://doi.org/10.1093/neuonc/noq074
- Athanasiou A, Perunovic B, Quilty RD, Gorgoulis VG, Kittas C, Love S : Expression of mos in ependymal gliomas. Am J Clin Pathol 120 : 699-705, 2003 https://doi.org/10.1309/DL2TLDJG7JB1BQ72
- Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Birks DK, Handler MH, Foreman NK : Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 20 : 560-570, 2010 https://doi.org/10.1111/j.1750-3639.2009.00333.x
- Bettegowda C, Agrawal N, Jiao Y, Wang Y, Wood LD, Rodriguez FJ, et al. : Exomic sequencing of four rare central nervous system tumor types. Oncotarget 4 : 572-583, 2013 https://doi.org/10.18632/oncotarget.964
- de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R : Biological background of pediatric medulloblastoma and ependymoma : a review from a translational research perspective. Neuro Oncol 10 : 1040-1060, 2008 https://doi.org/10.1215/15228517-2008-059
- Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, et al. : Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155 : 627-632, 1999 https://doi.org/10.1016/S0002-9440(10)65158-9
- Fink KL, Rushing EJ, Schold SC Jr, Nisen PD : Infrequency of p53 gene mutations in ependymomas. J Neurooncol 27 : 111-115, 1996
- Garcia C, Gutmann DH : Nf2/Merlin controls spinal cord neural progenitor function in a Rac1/ErbB2-dependent manner. PLoS One 9 : e97320, 2014 https://doi.org/10.1371/journal.pone.0097320
- Gilbertson RJ, Bentley L, Hernan R, Junttila TT, Frank AJ, Haapasalo H, et al. : ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res 8 : 3054-3064, 2002
- Gonzalez-Gomez P, Bello MJ, Alonso ME, Arjona D, Lomas J, de Campos JM, et al. : CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumours. Br J Cancer 88 : 109-114, 2003 https://doi.org/10.1038/sj.bjc.6600737
- Gupta RK, Sharma MC, Suri V, Kakkar A, Singh M, Sarkar C : Study of chromosome 9q gain, Notch pathway regulators and Tenascin-C in ependymomas. J Neurooncol 116 : 267-274, 2014 https://doi.org/10.1007/s11060-013-1287-z
- Hagel C, Treszl A, Fehlert J, Harder J, von Haxthausen F, Kern M, et al. : Supra- and infratentorial pediatric ependymomas differ significantly in NeuN, p75 and GFAP expression. J Neurooncol 112 : 191-197, 2013 https://doi.org/10.1007/s11060-013-1062-1
- Hamilton DW, Lusher ME, Lindsey JC, Ellison DW, Clifford SC : Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett 227 : 75-81, 2005 https://doi.org/10.1016/j.canlet.2004.11.044
- Huang B, Starostik P, Kuhl J, Tonn JC, Roggendorf W : Loss of heterozygosity on chromosome 22 in human ependymomas. Acta Neuropathol 103 : 415-420, 2002 https://doi.org/10.1007/s00401-001-0479-3
- Huang B, Starostik P, Schraut H, Krauss J, Sorensen N, Roggendorf W : Human ependymomas reveal frequent deletions on chromosomes 6 and 9. Acta Neuropathol 106 : 357-362, 2003 https://doi.org/10.1007/s00401-003-0739-5
- Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, et al. : Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466 : 632-636, 2010 https://doi.org/10.1038/nature09173
- Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, et al. : Pediatric ependymoma : biological perspectives. Mol Cancer Res 7 : 765-786, 2009 https://doi.org/10.1158/1541-7786.MCR-08-0584
- Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, et al. : Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28 : 3182-3190, 2010 https://doi.org/10.1200/JCO.2009.27.3359
- Kraus JA, de Millas W, Sorensen N, Herbold C, Schichor C, Tonn JC, et al. : Indications for a tumor suppressor gene at 22q11 involved in the pathogenesis of ependymal tumors and distinct from hSNF5/INI1. Acta Neuropathol 102 : 69-74, 2001
- Lamszus K, Lachenmayer L, Heinemann U, Kluwe L, Finckh U, Hoppner W, et al. : Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 91 : 803-808, 2001 https://doi.org/10.1002/1097-0215(200002)9999:9999<::AID-IJC1134>3.0.CO;2-P
- Magrassi L, Conti L, Lanterna A, Zuccato C, Marchionni M, Cassini P, et al. : Shc3 affects human high-grade astrocytomas survival. Oncogene 24 : 5198-5206, 2005 https://doi.org/10.1038/sj.onc.1208708
- Magrassi L, Marziliano N, Inzani F, Cassini P, Chiaranda I, Skrap M, et al. : EDG3 and SHC3 on chromosome 9q22 are co-amplified in human ependymomas. Cancer Lett 290 : 36-42, 2010 https://doi.org/10.1016/j.canlet.2009.08.023
- Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, et al. : Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24 : 5223-5233, 2006 https://doi.org/10.1200/JCO.2006.06.3701
- Monoranu CM, Huang B, Zangen IL, Rutkowski S, Vince GH, Gerber NU, et al. : Correlation between 6q25.3 deletion status and survival in pediatric intracranial ependymomas. Cancer Genet Cytogenet 182 : 18-26, 2008 https://doi.org/10.1016/j.cancergencyto.2007.12.008
- Olsen TK, Gorunova L, Meling TR, Micci F, Scheie D, Due-Tonnessen B, et al. : Genomic characterization of ependymomas reveals 6q loss as the most common aberration. Oncol Rep 32 : 483-490, 2014 https://doi.org/10.3892/or.2014.3271
- Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. : Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27 : 728-743, 2015 https://doi.org/10.1016/j.ccell.2015.04.002
-
Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. : C11orf95-RELA fusions drive oncogenic NF-
${\kappa}B$ signalling in ependymoma. Nature 506 : 451-455, 2014 https://doi.org/10.1038/nature13109 - Puget S, Grill J, Valent A, Bieche I, Dantas-Barbosa C, Kauffmann A, et al. : Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas. J Clin Oncol 27 : 1884-1892, 2009 https://doi.org/10.1200/JCO.2007.15.4195
- Rajaram V, Gutmann DH, Prasad SK, Mansur DB, Perry A : Alterations of protein 4.1 family members in ependymomas : a study of 84 cases. Mod Pathol 18 : 991-997, 2005 https://doi.org/10.1038/modpathol.3800390
- Rajaram V, Leuthardt EC, Singh PK, Ojemann JG, Brat DJ, Prayson RA, et al. : 9p21 and 13q14 dosages in ependymomas. A clinicopathologic study of 101 cases. Mod Pathol 17 : 9-14, 2004 https://doi.org/10.1038/modpathol.3800029
- Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, et al. : Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors : phase II study results. J Clin Oncol 24 : 115-122, 2006 https://doi.org/10.1200/JCO.2005.03.4082
- Rogers HA, Kilday JP, Mayne C, Ward J, Adamowicz-Brice M, Schwalbe EC, et al. : Supratentorial and spinal pediatric ependymomas display a hypermethylated phenotype which includes the loss of tumor suppressor genes involved in the control of cell growth and death. Acta Neuropathol 123 : 711-725, 2012 https://doi.org/10.1007/s00401-011-0904-1
- Rubio MP, Correa KM, Ramesh V, MacCollin MM, Jacoby LB, von Deimling A, et al. : Analysis of the neurofibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res 54 : 45-47, 1994
- Scheil S, Bruderlein S, Eicker M, Herms J, Herold-Mende C, Steiner HH, et al. : Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol 11 : 133-143, 2001
- Schneider D, Monoranu CM, Huang B, Rutkowski S, Gerber NU, Krauss J, et al. : Pediatric supratentorial ependymomas show more frequent deletions on chromosome 9 than infratentorial ependymomas : a microsatellite analysis. Cancer Genet Cytogenet 191 : 90-96, 2009 https://doi.org/10.1016/j.cancergencyto.2009.02.010
- Sherr CJ : The INK4a/ARF network in tumour suppression. Rev Mol Cell Biol 2 : 731-737, 2001 https://doi.org/10.1038/35096061
- Singh PK, Gutmann DH, Fuller CE, Newsham IF, Perry A : Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod Pathol 15 : 526-531, 2002 https://doi.org/10.1038/modpathol.3880558
- Suzuki SO, Iwaki T : Amplification and overexpression of mdm2 gene in ependymomas. Mod Pathol 13 : 548-553, 2000 https://doi.org/10.1038/modpathol.3880095
- Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. : Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8 : 323-335, 2005 https://doi.org/10.1016/j.ccr.2005.09.001
- Teo C, Nakaji P, Symons P, Tobias V, Cohn R, Smee R : Ependymoma. Childs Nerv Syst 19 : 270-285, 2003 https://doi.org/10.1007/s00381-003-0753-x
- Vera-Bolanos E, Aldape K, Yuan Y, Wu J, Wani K, Necesito-Reyes MJ, et al. : Clinical course and progression-free survival of adult intracranial and spinal ependymoma patients. Neuro Oncol 17 : 440-447, 2015 https://doi.org/10.1093/neuonc/nou162
- von Haken MS, White EC, Daneshvar-Shyesther L, Sih S, Choi E, Kalra R, et al. : Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas. Genes Chromosomes Cancer 17 : 37-44, 1996 https://doi.org/10.1002/(SICI)1098-2264(199609)17:1<37::AID-GCC6>3.0.CO;2-3
- Waha A, Koch A, Hartmann W, Mack H, Schramm J, Sorensen N, et al. : Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 110 : 542-549, 2004 https://doi.org/10.1002/ijc.20165
- Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, et al. : Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 71 : 4815-4830, 2014 https://doi.org/10.1007/s00018-014-1707-z
- Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. : A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123 : 727-738, 2012 https://doi.org/10.1007/s00401-012-0941-4
- Ward S, Harding B, Wilkins P, Harkness W, Hayward R, Darling JL, et al. : Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer 32 : 59-66, 2001 https://doi.org/10.1002/gcc.1167
- Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. : Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20 : 143-157, 2011 https://doi.org/10.1016/j.ccr.2011.07.007
- Yang I, Nagasawa DT, Kim W, Spasic M, Trang A, Lu DC, et al. : Chromosomal anomalies and prognostic markers for intracranial and spinal ependymomas. J Clin Neurosci 19 : 779-785, 2012 https://doi.org/10.1016/j.jocn.2011.11.004
- Zadnik PL, Gokaslan ZL, Burger PC, Bettegowda C : Spinal cord tumours : advances in genetics and their implications for treatment. Nat Rev Neurol 9 : 257-266, 2013
- Zheng PP, Pang JC, Hui AB, Ng HK : Comparative genomic hybridization detects losses of chromosomes 22 and 16 as the most common recurrent genetic alterations in primary ependymomas. Cancer Genet Cytogenet 122 : 18-25, 2000 https://doi.org/10.1016/S0165-4608(00)00265-X
- Zhou XP, Li YJ, Hoang-Xuan K, Laurent-Puig P, Mokhtari K, Longy M, et al. : Mutational analysis of the PTEN gene in gliomas : molecular and pathological correlations. Int J Cancer 84 : 150-154, 1999 https://doi.org/10.1002/(SICI)1097-0215(19990420)84:2<150::AID-IJC10>3.0.CO;2-#
Cited by
- Genetic differences on intracranial versus spinal cord ependymal tumors: a meta-analysis of genetic researches vol.25, pp.12, 2016, https://doi.org/10.1007/s00586-016-4745-4
- Recent advances in intradural spinal tumors vol.20, pp.6, 2018, https://doi.org/10.1093/neuonc/nox230
- Preoperative and intraoperative perfusion magnetic resonance imaging in a RELA fusion-positive anaplastic ependymoma: A case report vol.9, pp.1, 2016, https://doi.org/10.4103/sni.sni_116_18
- Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors vol.6, pp.4, 2016, https://doi.org/10.3390/medsci6040085
- Stereotactic Radiosurgery for Pediatric and Adult Intracranial and Spinal Ependymomas vol.97, pp.3, 2019, https://doi.org/10.1159/000502653
- Pediatric Supratentorial Ependymoma: Surgical, Clinical, and Molecular Analysis vol.85, pp.1, 2019, https://doi.org/10.1093/neuros/nyy239
- Telomere Maintenance in Pediatric Cancer vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20235836
- Cortically based cystic supratentorial RELA fusion-positive ependymoma: a case report with unusual presentation and appearance and review of literature vol.15, pp.12, 2016, https://doi.org/10.1016/j.radcr.2020.09.022
- Mechanisms of telomere maintenance in pediatric brain tumors: Promising targets for therapy - A narrative review vol.3, pp.3, 2020, https://doi.org/10.4103/glioma.glioma_20_20
- An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma vol.13, pp.13, 2016, https://doi.org/10.3390/cancers13133221