DOI QR코드

DOI QR Code

Distribution of Bacterial Angular Leaf Spot of Strawberry and Characterization of Xanthomonas fragariae Strains from Korea

한국의 딸기세균모무늬병 발생분포 및 딸기세균모무늬병균 특성조사

  • Yoon, Myung-Ju (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myung, Inn-Shik (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Jae-Yeon (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, You-Shin (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Yong-Hwan (Disaster Management Division, Extension Service Bureau, Rural Development Administration) ;
  • Kim, Dae-Young (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Young-Ki (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 윤명주 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 명인식 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 이재연 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김유신 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 이용환 (농촌진흥청 농촌지원국 재해대응과) ;
  • 김대영 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이영기 (농촌진흥청 국립농업과학원 작물보호과)
  • Received : 2015.10.29
  • Accepted : 2016.03.17
  • Published : 2016.03.31

Abstract

Nationwide survey for angular leaf spot (ALS) of strawberry caused by Xanthomonas fragariae, a quarantine disease in Korea, was performed in November 2012. In the survey, ALS was observed in eighty eight farmers' fields of Sukok, Jinju and Okjong, Hadong in Gyeongnam Province, and one field in Namwon of Jeollabuk Province. The infected field of Namwon closed immediately after the disease diagnosed ALS. In detailed survey of Sukok and Okjong areas during February 2012 to January 2015, ALS occurrence decreased from 45% farmer's fields on December 2012 to 5% on January 2015, and from 38% on November 2013 to 5% on January 2015, respectively. Phenotypic characteristics of the Korean strains were similar to those of the type strain of X. fragariae. A multilocus sequence analysis of Korean strains of X. fragariae was conducted using four genes; dnaK, fyuA, gyrB, and rpoD. All the Korean strains had the same sequences of the four genes. The concatenated sequences of the Korean strains shared 100% with that of the type strain of X. fragariae. All strawberry cultivars tested were susceptible to the strains of X. fragariae two weeks after inoculation. The inoculated sites were necrosis and expanded, which were rated 4 based on evaluation of inoculation site.

2012년 11월 국가관리세균병인 딸기세균모무늬병 발생 분포를 조사하였다. 충청남도와 제주도를 제외한 전국 1,482농가포장을 조사한 결과, 경남 진주시 수곡면, 하동군 옥종면 88농가포장과 전북 남원 1농가포장에서 병이 발생되었다. 남원에서 발생된 포장은 병 진단 후 폐원되었다. 2012년 2월에서 2015년 1월까지 경남 진주시 수곡면과 하동군 옥종면의 딸기세균모무늬병 발생을 조사하였다. 2012년 12월 조사에서 수곡면은 45% 발생 후 감소하여 2015년 1월까지 약 5% 발생되었고, 옥종면은 2013년 11월 38% 발생후 감소하여 2015년 1월 약 5% 발생하였다. 분리된 세균의 특성을 조사하였다. 생리생확학적 특성은 X. fragariae 대표 균주와 일치하였다. 딸기세균모무늬병균의 dnaK (940 bp), fyuA (698 bp), gyrB (865 bp), rpoD (873 bp) 유전자들을 대상으로 3374 bp 염기의 MLSA 분석 결과를 딸기세균모무늬병 대표 균주와 비교한 결과 모든 유전자는 100% 일치하였다. X. fragariae BC3191과 BC3195에 대한 딸기 품종의 저항성을 조사하였다. 조사된 모든 품종은 딸기세균모무늬병에 감수성이었다. 모든 품종들은 접종 2주 후 접종 부위가 괴저되고 확장되어 저항성 등급 4로 평가되었다.

Keywords

References

  1. Ait Tayeb, L., Ageron, E., Grimont, F. and Grimont, P. A. 2005. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res. Microbiol. 156: 763-773. https://doi.org/10.1016/j.resmic.2005.02.009
  2. Alippi, A. M., Ronco, B. L. and Carranza, M. R. 1989. Angular leaf spot of strawberry, a new disease in Argentina: comparative control with antibiotics and fungicides. Adv. Hortic. Sci. 3: 3-6.
  3. Bestfleisch, M., Richter, K., Wensing A., Wunsche, J. N., Hanke, M. -V., Hofer, M., Schulte, E. and Flachowsky, H. 2015. Resistance and systemic dispersal of Xanthomonas fragariae in strawberry germplasm (Fragaria L.). Plant Pathol. 64: 71-80. https://doi.org/10.1111/ppa.12232
  4. Conover, R. A. and Gerhold, N. R. 1981. Mixtures of copper and maneb or mancozeb for control of bacterial spot of tomato and their compatibility for control of fungus diseases. Proc. Fla. State Hortic. Soc. 94: 154-156.
  5. Desmet, E. M., Maes, M., Van Vaerenbergh, J., Verbraeken, L. and Baets W. 2009. Sensitivity screening of commonly grown strawberry cultivars towards angular leaf spot caused by Xanthomonas fragariae. Acta Hortic. 842: 275-278.
  6. Dye, D. W. 1968. A taxonomic study of the genus Erwinia. I. The "amylovora" group. N. Z. J. Sci. 11: 590-607.
  7. Elphinstone, J. G. 2005. Angular leaf spot and bacterial leaf blight: two new notifiable strawberry plant diseases. In: HDC Factsheet 03/05. Horticultural Development Council, East Mailing, Kent, UK.
  8. Epstein, A. H. 1966. Angular leaf spot of strawberry. Plant Dis. Rep. 50: 167.
  9. European and Mediterranean Plant Protection Organization (EPPO). (2010 onwards). EPPO Alert List. URL http://www.eppo.int/QUARANTINE/Alert_List/alert_list.htm [21 January 2012].
  10. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  11. Handelsman, J., Houser, B. and Kriegel, H. 1996. Biology Brought to Life: A Guide to Teaching Students to Think Like Scientists. McGraw-Hill, New York, NY, USA.
  12. Hildebrand, D. C., Schroth, M. N. and Wilhelm, S. 1967. Systemic invasion of strawberry by Xanthomonas fragariae causing vascular collapse. Phytopathology 57: 1260-1261.
  13. Howard, C. M. and Albregts, E. E. 1973. Strawberry. APS Fungic. Nematicide Tests 29: 47.
  14. Janse, J. D., Rossi, M. P., Gorkink, R. F. J., Derks, J. H. J., Swings, J., Janssens, D. and Scortichini, M. 2001. Bacterial leaf blight of strawberry (Fragaria (x) ananassa) caused by a pathovar of Xanthomonas arboricola, not similar to Xanthomonas fragariae Kennedy & King. Description of the causal organism as Xanthomonas arboricola pv. fragariae (pv. nov., comb. nov.). Plant Pathol. 50: 653-665. https://doi.org/10.1046/j.1365-3059.2001.00644.x
  15. Jones, J. B., Woltz, S. S., Kelly, R. O. and Harris, G. 1991. The role of ionic copper, total copper, and select bactericides on control of bacterial spot of tomato. Proc. Fla. State Hortic. Soc. 104: 257-259.
  16. Kastelein, P., de Vries, I., Krijger, M. and van der Wolf, J. 2009. Effect van loofdoodmiddel op de overleving van Xanthomonas fragariae in ondergewerkte gewasresten in aardbei. In: Rapport 258 Plant Research International. Biointeracties and Plant Health, Wageningen, the Netherlands.
  17. Kennedy, B. W. and King, T. H. 1962a. Angular leaf spot of strawberry caused by Xanthomonas fragariae sp. nov. Phytopathology 52: 873-875.
  18. Kennedy, B. W. and King, T. H. 1962b. Studies on epidemiology of bacterial angular leaf spot on strawberry. Plant Dis. Rep. 46: 360-363.
  19. Kwon, J. H., Yoon, H. S., Kim, J. S., Shim, C. K. and Nam, M. H. 2010. Angular leaf spot of strawberry caused by Xanthomonas fragariae. Res. Plant Dis. 16: 97-100. (In Korean) https://doi.org/10.5423/RPD.2010.16.1.097
  20. Lewers, K. S., Mass, J. L., Hokanson, S. C., Gouin, C. and Hartung, J. S. 2003. Inheritance of resistance in strawberry to bacterial angular leafspot disease caused by Xanthomonas fragariae. J. Am. Soc. Hortic. Sci. 128: 209-212.
  21. Maas, J. L., Gouin-Behe, C., Hartung, J. S. and Hokanson, S. C. 2000. Sources of resistance for two diffententially pathogenic strains of Xanthomonas fragariae in Fragria genotypes. HortScience 35: 128-131.
  22. Maas, J. L., Pooler, M. R. and Galletta, G. J. 1995. Bacterial angular leaf spot disease of strawberry: present status and prospects for control. Adv. Strawberry Res. 14: 18-24.
  23. Marco, G. M. and Stall, R. E. 1983. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Dis. 67: 779-781. https://doi.org/10.1094/PD-67-779
  24. Ministry of Agriculture, Food and Rural Affairs. 2014. Agriculture, Food and Rural Affairs Statistics Yearbook. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
  25. National Plant Quarantine Service. 2008. History of Plant Quarantine in Korea. Dong Yang PNC, Anyang, Korea.
  26. Opgenorth, D. C., Smart, C. D., Louws, F. J., de Bruijn, F. J. and Kirkpatrick, B. C. 1996. Identification of Xanthomonas fragariae field isolates by rep-PCR genomic fingerprinting. Plant Dis. 80: 868-873. https://doi.org/10.1094/PD-80-0868
  27. Perez-Jimenez, R. M., De Cal, A., Melgarejo, P., Cubero, J., Soria, C., Zea-Bonilla, T. and Larena, I. 2012. Resistance of several strawberry cultivars against three different pathogens. Span. J. Agric. Res. 10: 502-512. https://doi.org/10.5424/sjar/2012102-345-11
  28. Pooler, M. R., Ritchie, R. D. F. and Hartung, J. S. 1996. Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen. Appl. Environ. Microbiol. 62: 3121-3127.
  29. Randhawa, P. S. and Schaad, N. W. 1984. Selective isolation of Xanthomonas campestris pv. campestris from crucifer seeds. Phytopathology 74: 268-272. https://doi.org/10.1094/Phyto-74-268
  30. Roberts, P. D., Berger, R. D., Jones, J. B., Chandler, C. K. and Stall, R. E. 1997. Disease progress, yield loss and control of Xanthomonas fragariae on strawberry plants. Plant Dis. 81: 917-921. https://doi.org/10.1094/PDIS.1997.81.8.917
  31. Roberts, P. D., Hodge, N. C., Bouzar, H., Jones, J. B., Stall, R. E., Berger, R. D. and Chase, A. R. 1998. Relatedness of strains of Xanthomonas fragariae by restriction fragment length polymorphism, DNA-DNA reassociation, and fatty acid analyses. Appl. Environ. Microbiol. 64: 3961-3965.
  32. Roberts, P. D., Jones, J. B., Chandler, C. K., Stall, R. E. and Berger, R. D. 1996. Survival of Xanthomonas fragariae on strawberry in summer nurseries in Florida detected by specific primers and nested polymerase chain reaction. Plant Dis. 80: 1283-1288. https://doi.org/10.1094/PD-80-1283
  33. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. American Phytopathological Society, St. Paul, MN, USA. 189 pp.
  34. Schaad, N. W. and White, W. C. 1974. A selective medium for soil isolation and enumeration of Xanthomonas campestris. Phytopathology 64: 876-880. https://doi.org/10.1094/Phyto-64-876
  35. Smith, I. M., McNamara, D. G., Scott, P. R. and Harris, K. M. 1992. Xanthomonas fragariae. In: Quarantine Pests for Europe. Data Sheets on Quarantine Pests for the European Communities and for the European and Mediterranean Plant Protection Organization, eds. by I. M. Smith, D. G. McNamara, P. R. Scott and K. M. Harris, pp. 829-833. CAB International, Wallingford, UK.
  36. Stall, R. E. and Thayer, P. L. 1962. Streptomycin resistance of the bacterial spot pathogen and control with streptomycin. Plant Dis. Rep. 46: 389-392.
  37. Stoger, A., Barionovi, D., Calzolari, A., Gozzi, R., Ruppitsch, W. and Scortichini, M. 2008. Genetic variability of Xanthomonas fragariae strains obtained from field outbreaks and culture collections as revealed by repetitive-sequence PCR and AFLP. J. Plant Pathol. 90: 469-473.
  38. Suslow, T. V., Schroth, M. N. and Isaka, M. 1982. Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72: 917-918. https://doi.org/10.1094/Phyto-72-917
  39. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  40. Van den Mooter, M. and Swings, J. 1990. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int. J Syst. Bacteriol. 40: 348-369. https://doi.org/10.1099/00207713-40-4-348
  41. Young, J. M. and Park, D. C. 2007. Relationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences. Syst. Appl. Micorbiol. 30: 343-354. https://doi.org/10.1016/j.syapm.2007.03.002