과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Chen, L.W., Zhang, S.L. and Gui, H.R. (2014), "Prevention of water and quicksand inrush during extracting contiguous coal seams under the lowermost aquifer in the unconsolidated Cenozoic alluvium-A case study", Arab. J. Geosci, 7(6), 2139-2149. https://doi.org/10.1007/s12517-013-1029-8
- Cho, J.W., Jeon, S., Jeong, H.Y. and Chang, S.H. (2013), "Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement", Tunn. Undergr. Sp. Tech., 35, 37-54. https://doi.org/10.1016/j.tust.2012.08.006
- Di, Q.Y., Wu, F.Q., Wang, G.J., Tao, B., Gong, F., An, Z.G., Shi, K.F., Li, Y.X., Wang, R. and Wang, M.Y. (2005), "Geophysical exploration over long deep tunnel for west route of south-to-north water transfer project", Chinese J. Rock Mech. Eng., 24(20), 3631-3638.
- Do, N.A., Oreste, P., Dias, D., Antonello, C., Irini, D.M. and Livio, L. (2014), "Stress and strain state in the segmental linings during mechanized tunnelling", Geomech. Eng., Int. J., 7(1), 75-85. https://doi.org/10.12989/gae.2014.7.1.075
- Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng, Int. J., 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323
- Golob, R., Stokelj, T. and Grgic, D. (1998), "Neural-network-based water inflow forecasting", Control Eng. Pract., 6(5), 593-600. https://doi.org/10.1016/S0967-0661(98)00037-9
- Hu, Y., Yan, G. and Shi, X. (2008), "Study on physical and numerical simulation of water inrush prediction theory for coal mining above confined aquifer", Chinese J. Rock Mech. Eng., 27(1), 9-15.
- Huang, C.H., Feng, T., Wang, W.J. and Liu, H. (2010), "Mine water inrush prediction based on fractal and support vector machines", J. Chinese Coal Soc., 35(5), 806-810.
- Huang, H.F., Mao, X.B., Yao, B.H. and Pu, H. (2012), "Numerical simulation on fault water-inrush based on fluid-solid coupling theory", J. Coal Sci. Eng., 18(3), 291-296. https://doi.org/10.1007/s12404-012-0312-8
- Islam, M.R. and Islam, M.S. (2005), "Water inrush hazard in Barapukuria coal mine, Dinajpur District, Bangladesh", Bangl. J. Geol., 24(1), 1-17.
- Ivars, D.M. (2006), "Water inflow into excavations in fractured rock-A three-dimensional hydromechanical numerical study", Int. J. Rock Mech. Min. Sci., 43(5), 705-725. https://doi.org/10.1016/j.ijrmms.2005.11.009
- Jin, H., Shi, L.Q., Yu, X.G., Wei, J.C. and Li, S.C. (2009), "Mechanism of mine water-inrush through a fault from the floor", Min. Sci. Tech, 19(3), 276-281. https://doi.org/10.1016/S1674-5264(09)60052-1
- Kong, H.L. and Chen, Z.Q. (2006), "Water-inrush-factor and its application in the analysis on harmfulness of water-inrush in the long wall mining in longgu coal mine", J. Wuhan U. Tech., 28(9), 80-81.
- Kong, H.L., Miao, X.X., Wang, L.Z., Zhang, Y. and Chen, Z.Q. (2007), "Analysis of the harmfulness of water-inrush from coal seam floor based on seepage instability theory", J. China U. Min. Tech., 17(4), 453-458. https://doi.org/10.1016/S1006-1266(07)60124-2
- Lei, X., Zhang, J. and Xie, T. (2003), "Forecast for water-inrush from coal floor based on genetic neural networks", Comput. Eng., 11, 132-133.
- Li, L.J. and Zhang, J.J. (1995), "Calculation and prediction of water-inrush from mining floor and its application", Coal Geol. Explor., 23(4), 34-38.
- Li, L.J., Qian, M.G. and Li, S.G. (1996), "Mechanism of water-inrush through fault", J. China Coal Soc., 21(2), 119-123.
- Li, S.C., Li, S.C., Zhang, Q.S., Xue, Y.G., Ding, W.T., Zhong, S.H., He, F.L. and Lin, Y.S. (2007), "Forecast of karst-fractured groundwater and defective geological conditions", Chinese J. Rock Mech. Eng., 26(2), 217-225.
- Li, S.C., Xue, Y.G., Zhang, Q.S., Li, S.C., Li, L.P., Sun, K.G., Ge, Y.H., Su, M.X., Zhong, S.H. and Li, X. (2008), "Key technology study on comprehensive prediction and early-warning of geological hazards during construction in high-risk karst areas", Chinese J. Rock Mech. Eng., 27(7), 1297-1307.
- Li, L.C., Tang, C.A., Liang, Z.Z., Ma, T.H. and Zhang, Y.B. (2009a), "Numerical simulation on water inrush process due to activation of collapse columns in coal seam floor", J. Min. Safe Eng., 2, 158-162.
- Li, Q.F., Wang, W.J., Zhu, C.Q. and Peng, W.Q. (2009b), "Analysis of fault water-inrush mechanism based on the principle of water-resistant key strata", J. Min. Safe Eng., 1, 87-90.
- Li, L.P., Li, S.C. and Zhang, Q.S. (2010a), "Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels", Rock. Soil Mech., 2, 523-528.
- Li, S.C., Li, S.C., Zhang, Q.S., Xue, Y.G., Liu, B., Su, M.X., Wang, Z.C. and Wang, S.G. (2010b), "Predicting geological hazards during tunnel construction", Rock Mech. Geotech. Eng., 2(3), 232-242. https://doi.org/10.3724/SP.J.1235.2010.00232
- Li, S.C., Zhou, Z.Q., Li, L.P., Xu, Z.H., Zhang, Q.Q. and Shi, S.S. (2013), "Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system", Tunn. Undergr. Sp. Tech., 38, 50-58. https://doi.org/10.1016/j.tust.2013.05.001
- Li, S.C., Xu, Z.H. and Ma, G.W. (2014), "A graph-theoretic pipe network method for water flow simulation in discrete fracture networks: GPNM", Tunn. Undergr. Sp. Tech., 42, 247-263. https://doi.org/10.1016/j.tust.2014.03.012
- Li, L.P., Lei, T., Li, S.C., Xu, Z.H., Xue, Y.G. and Shi, S.S. (2015a), "Dynamic risk assessment of water inrush in tunnelling and software development", Geomech. Eng., Int. J., 9(1), 57-81. https://doi.org/10.12989/gae.2015.9.1.057
- Li, L.P., Lei, T., Li, S.C., Zhang, Q.Q., Xu, Z.H., Shi, S.S. and Zhou, Z.Q. (2015b), "Risk assessment of water inrush in karst tunnels and soft development", Arab. J. Geosci., 8(4), 1843-1854. https://doi.org/10.1007/s12517-014-1365-3
- Liao, W., Zhou, R.Y. and Li, S.Q. (2006), "Study on the non-linear forecast methods for water inrush from coal floor based on wavelet neural network", China Safe Sci. J., 11, 24-28.
- Ling, S.X., Ren, Y., Wu, X.Y., Zhao, S.Y. and Qin, L.M. (2015), "Study on reservoir and water inrush characteristic in Nibashan Tunnel, Sichuan Province, China", Eng. Geol. Soc. Territ., 6, 577-582.
- Liu, H.L., Yang, T.H., Yu, Q.L., Chen, S.K. and Wei, C.H. (2010), "Numerical analysis on the process of water inrush from the floor of seam 12 in Fangezhuang coal mine", Coal Geol. Explor., 38(3), 27-31.
- Liu, Z., Jin, D. and Liu, Q. (2011), "Prediction of water inrush through coal floors based on data mining classification technique", Procedia Earth. Planet Sci., 3, 166-174. https://doi.org/10.1016/j.proeps.2011.09.079
- Ma, L., Liu, Y. and Zhou, X.P. (2010), "Fuzzy comprehensive evaluation method of F statistics weighting in identifying mine water inrush source", Int. J. Eng. Sci. Tech., 2(7), 123-128.
- Marinelli, F. and Niccoli, W.L. (2000), "Simple analytical equations for estimating ground water inflow to a mine pit", Groundwater, 38(2), 311-314. https://doi.org/10.1111/j.1745-6584.2000.tb00342.x
- Meng, Z.P., Li, G.Q. and Xie, X.T. (2012), "A geological assessment method of floor water inrush risk and its application", Eng. Geol., 143, 51-60.
- Qian, Q.H. (2012), "Challenges faced by underground projects construction safety and countermeasures", J. Rock Mech. Eng., 31(10), 1945-1956.
- Qian, Q.H., Li. Z.P. and Fu, D.M. (2002), "The present and prospect of application of tunnels in China's underground engineering", J. Undergr. Sp., 22(1), 1-11.
- Qu, H.F., Liu, Z.G. and Zhu, H.H. (2006), "Technique of synthetic geologic prediction ahead in tunnel informational construction", Chinese J. Rock Mech. Eng., 25(6), 1246-1251.
- Shang, Y.J., Yang, Z.F., Zeng, Q.L., Sun, Y.C., Shi, Y.Y. and Yuan, G.X. (2007), "Retrospective analysis of TBM accidents from its poor flexibility to complicated geological conditions", J. Rock Mech. Eng., 26(12), 2404-2411.
- Shi, L.Q. and Singh, R.N. (2001), "Study of mine water inrush from the tunnel floor strata through faults", Min. Water. Environ., 20(3), 140-147. https://doi.org/10.1007/s10230-001-8095-y
- Shi, L. and Xu, L.Y. (2010), "Prediction of mine water inrush sources based on cluster analysis of hydro geochemical features", Coal Sci. Tech., 3, 97-100.
- Shi, L.Q., Qiu, M., Wei, W.X., Xu, D.J. and Han, J. (2014), "Water inrush evaluation of coal seam floor by integrating the water inrush coefficient and the information of water abundance", Int. J. Min. Sci. Tech., 24(5), 677-681. https://doi.org/10.1016/j.ijmst.2014.03.028
- Wang, J.H. and Lu, C.C. (2007), "A semi-analytical method for analyzing the tunnel water inflow", Tunn. Undergr. Sp. Tech., 22(1), 39-46. https://doi.org/10.1016/j.tust.2006.03.003
- Wang, J.T. and Wang, X.L. (2011), "Discussion on water inrush coefficient method applied to predict water inrush danger of seam floor based on Gaojiata Mine as example", Coal Sci. Tech., 7, 106-111.
- Wang, L.G., Song, Y. and Miao, X.X. (2003), "Study on prediction of water-inrush from coal floor based on cusp catastrophic model", Chinese J. Rock Mech. Eng., 22(4), 573-577.
- Wang, T.T., Wang, W.L. and Lin, M.L. (2004), "Harnessing the catastrophic inrush of water into new Yungchuen Tunnel in Taiwan", Tunn. Undergr. Sp. Tech., 19(4-5), 418-426. https://doi.org/10.1016/j.tust.2004.02.037
- Wang, J.S., Wang, L., Cao, Z.G., Liu, Z.G., Wang, L. and Zhu, H. (2007), "Practice on synthetic geological prediction ahead of construction of Xiamen subsea tunnel", Chinese J. Rock Mech. Eng., 26(11), 2309-2317.
- Wang, Y., Yang, W., Li, M. and Liu, X. (2012), "Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation", Int. J. Rock Mech. Min. Sci., 52, 50-55. https://doi.org/10.1016/j.ijrmms.2012.03.006
- Wu, Q., Xu, H. and Pang, W. (2008), "GIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of north China", Environ. Geol., 54(5), 937-943. https://doi.org/10.1007/s00254-007-0887-3
- Wu, Q., Liu, Y., Liu, D. and Zhou, W. (2011a), "Prediction of floor water inrush: the application of GISbased AHP vulnerable index method to Donghuantuo coal mine, China", Rock Mech. Rock Eng., 44(5), 591-600. https://doi.org/10.1007/s00603-011-0146-5
- Wu, Q., Zhu, B. and Liu, S.Q. (2011b), "Flow-solid coupling simulation method analysis and time identification of lagging water-inrush near mine fault belt", Chinese J. Rock Mech. Eng., 30(1), 93-105.
- Xu, J.L., Zhu, W.B. and Wang, X.Z. (2011), "Study on water-inrush mechanism and prevention during coal mining under unconsolidated confined aquifer", J. Min. Safe. Eng., 3, 333-339.
- Xu, Z.H., Ma, G.W. and Li, S.C. (2014), "A Graph-theoretic Pipe Network Method for water flow simulation in a porous medium: GPNM", Int. J. Heat Fluid Fl., 45, 81-97. https://doi.org/10.1016/j.ijheatfluidflow.2013.11.003
- Yao, B.H., Bai, H.B. and Zhang, B.Y. (2012), "Numerical simulation on the risk of roof water inrush in Wuyang Coal Mine", Int. J. Min. Sci. Tech., 22(2), 273-277. https://doi.org/10.1016/j.ijmst.2012.03.006
- Yang, X.L. and Yan, R.M. (2015), "Collapse mechanism for deep tunnel subjected to seepage force in layered soils", Geomech. Eng., Int. J., 8(5), 741-756. https://doi.org/10.12989/gae.2015.8.5.741
- Yin, S.X. and Wu, Q. (2004), "Simulation and mechanism analysis of water inrush from karst collapse columns in coal floor", Chinese J. Rock Mech. Eng., 15, 2551-2256.
- Zarei, H.R., Uromeily, A. and Sharifzadeh, M. (2012), "Identifying geological hazards related to tunneling in carbonate karstic rocks-Zagros, Iran", Arba. J. Geosci., 5(3), 457-464. https://doi.org/10.1007/s12517-010-0218-y
- Zhang, J.C. (2005), "Investigations of water inrushes from aquifers under coal seams", Int. J. Rock Mech. Min. Sci., 42(3), 350-360. https://doi.org/10.1016/j.ijrmms.2004.11.010
- Zhang, J.J. and Fu, B.J. (2007), "Advances in tunnel boring machine application in China", J. Rock Mech. Eng., 26(2), 226-238.
- Zhang, J. and Peng, S. (2005), "Water inrush and environmental impact of shallow seam mining", Environ. geol., 48(8), 1068-1076. https://doi.org/10.1007/s00254-005-0045-8
- Zhang, H.S., Xue, G.W., Shi, X.W., Liu, H.F. and Hu, Y.Q. (2009), "Prediction of water inrush from coal seam floor confined based on geo-information composite overlay analysis", J. China Coal Soc., 34(8), 1100-1104.
- Zhou, Z.Q., Li, S.C., Li, L.P., Shi, S.S. and Xu, Z.H. (2015), "An optimal classification method for risk assessment of water inrush in karst tunnels based on the grey system", Geomech. Eng., Int. J., 8(5), 631-647. https://doi.org/10.12989/gae.2015.8.5.631
- Zhu, W.C. and Wei, C.H. (2011), "Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydro mechanical model", Environ. Earth Sci., 62(1), 43-54. https://doi.org/10.1007/s12665-010-0494-6
- Zhu, Q.H., Feng, M.M. and Mao, X.B. (2008), "Numerical analysis of water inrush from working-face floor during mining", J. China U. Min. Tech., 18(2), 159-163. https://doi.org/10.1016/S1006-1266(08)60034-6
피인용 문헌
- Semianalytical Solution to Determine Minimum Safety Thickness of Rock Resisting Water Inrush from Filling-Type Karst Caves vol.18, pp.2, 2018, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001071
- A multi-factor comprehensive risk assessment method of karst tunnels and its engineering application 2019, https://doi.org/10.1007/s10064-017-1214-1
- Flow Characteristics and Escape-Route Optimization after Water Inrush in a Backward-Excavated Karst Tunnel vol.17, pp.4, 2017, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000787
- A possible prediction method to determine the top concealed karst cave based on displacement monitoring during tunnel construction 2017, https://doi.org/10.1007/s10064-017-1060-1
- A spiral variable section capillary model for piping hydraulic gradient of soils causing water/mud inrush in tunnels vol.13, pp.6, 2017, https://doi.org/10.12989/gae.2017.13.6.947
- Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.177
- Flow characteristics after water inrush from the working face in karst tunneling vol.14, pp.5, 2018, https://doi.org/10.12989/gae.2018.14.5.407
- Surface roughness and boundary load effect on nonlinear flow behavior of fluid in real rock fractures vol.79, pp.9, 2020, https://doi.org/10.1007/s10064-020-01860-5
- Coupled Hydrologic-Mechanical-Damage Analysis and Its Application to Diversion Tunnels of Hydropower Station vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/8341528