Acknowledgement
Supported by : China Scholarship Council
References
- Biot, M.A. (1941), "General theory of three-dimensional consolidation", J. Appl. Phys., 26(2), 155-164.
- Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid, Part I: Low frequency range", J. Acoust. Soc., Am., 28(2), 168-178. https://doi.org/10.1121/1.1908239
- Grant, W.D. and Madsen, O.S. (1979), "Combined wave and current interaction with a rough bottom", J. Geophys. Res., 84(C4), 1797-1808. https://doi.org/10.1029/JC084iC04p01797
- Hirt, C.W. and Nichols, B.D. (1981), "Volume of fluid(VOF) method for the dynamics of free boundaries", J. Comput. Phys., 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
- Hsu, H.C., Chen, Y.Y., Hsu, J.R.C. and Tseng, W.J. (2009), "Nonlinear water waves on uniform current in Lagrangian coordinates", J. Nonlinear Math. Phys., 16(1), 47-61. https://doi.org/10.1142/S1402925109000054
- Israeli, M. and Orszag, S.A. (1981), "Approximation of radiation boundary conditions", J. Computat. Phys., 41(1), 115-131. https://doi.org/10.1016/0021-9991(81)90082-6
- Jeng, D.S. (2013), Porous Models for Wave-seabed Interactions, Springer.
- Jeng, D.S. and Ou, J. (2010), "3D models for wave-induced pore pressure near breakwater heads", Acta Mechanica, 215(1), 85-104. https://doi.org/10.1007/s00707-010-0303-z
- Jeng, D.S. and Seymour, B.R. (2007), "A simplified analytical approximation for pore-water pressure buildup in a porous seabed", J. Waterw Port Coast. Ocean Eng., 133(4), 309-312. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:4(309)
- Kemp, P.H. and Simons, R.R. (1982), "The interaction of waves and a turbulent current: Waves propagating with the current", J. Fuild Mech., 116, 227-250. https://doi.org/10.1017/S0022112082000445
- Kemp, P.H. and Simons, R.R. (1983), "The interaction of waves and a turbulent current: Waves propagating against the current", J. Fuild Mech., 130, 73-89. https://doi.org/10.1017/S0022112083000981
- Launder, B.E. and Spalding, D.B. (1974), "The numerical computation of turbulence flows", Comput. Method. Appl. Mech. Eng., 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- Li, T., Troch, P. and Rouck, J.D. (2007), "Interactions of breaking waves with a current over cut cells", J. Comput. Phys., 223(2), 865-897. https://doi.org/10.1016/j.jcp.2006.10.003
- Liao, C.C., Zhao, H.-Y. and Jeng, D.-S. (2014), "Poro-elastoplastic model for wave-induced liquefaction", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE2014), San Francisco, CA, USA, June. (CD-ROM)
- Liao, C.C., Jeng, D.-S. and Zhang L.L. (2015), "Analytical approximation fr dynamic soil response of a porous seabed under combined wave and current loading", J. Coast. Res., 31(5), 1120-1128. DOI: 10.2112/JCOASTRES-D-13-00120-.1
- Lin, P. and Liu, P.L.-F. (1999), "Internal wave-maker for Navier-Stokes equations models", J. Waterw Port Coast. Ocean Eng., ASCE, 125(4), 207-215. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)
- Liu, B., Jeng, D.-S. and Zhang, J.-S. (2014), "Dynamic response of a porous seabed of finite depth due to combined wave and current loading: Inertial forces", J. Coast. Res., 30(4), 765-776.
- Markus, D., Hojjat, M., Wuechner, R. and Bletzinger, K.U. (2013), "A CFD approach to modelling wavecurrent interaction", Int. J. Offshore Polaer Eng., 23(1), 29-32.
- Park, J.C., Kim, M.H. and Miyata, H. (2001), "Three dimensional numerical wave tank simulations on fully nonlinear wave-current-body interactions", J. Mar. Sci. Technol., 6(2), 70-82. https://doi.org/10.1007/s773-001-8377-2
- Qi, W.G. and Gao, F.P. (2014), "Water flume modelling of dynamic responses of sandy seabed under the action of combined waves and current: Turbulent boundary layer and pore-water pressure", Proceedings of the 8th International Conference on Physical Modelling in Geotechnics (ICPMG2014), Perth, Australia, January.
- Rodi, W. (1993), Turbulence Models and their Application in Hydraulics-state-of-the Art Review, (3rd edition), Balkema, Rotterdam, The Netherlands.
- Sassa, S. and Sekiguchi, H. (1999), "Wave induced liquefaction of beds of sand in a centrifuge", Geotechnique, 49(5), 621-638. https://doi.org/10.1680/geot.1999.49.5.621
- Sassa, S., Sekiguchi, H. and Miyamamot, J. (2001), "Analysis of progressive liquefaction as moving boundary problem", Geotechnique, 51(10), 847-857. https://doi.org/10.1680/geot.2001.51.10.847
- Seed, H.B. and Lee, K.L. (1966), "Liquefaction of saturated sands during cyclic loading", J. Soil Mech. Found. Div., Proceedings of the American Society of Civil Engineers, 92(6), 1249-1273.
- Seed, H.B. and Rahman, M.S. (1978), "Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils", Marine Geotechnol., 3(2), 123-150. https://doi.org/10.1080/10641197809379798
- Sekiguchi, H., Kita, K. and Okamoto, O. (1995), "Response of poro-elastoplastic beds to standing waves", Soil. Found., 35(3), 31-42. https://doi.org/10.3208/sandf.35.31
- Sumer, B.M. and Cheng, N.S. (1999), "A random-walk model for pore pressure accumulation in marine soils", Proceedings of the 9th International Offshore and Polar Engineering Conference (ISOPE99), Brest, France, May-June, 1, 521-528.
- Sumer, B.M. and Fredsoe, J. (2002), The Mechanism of Scour in the Marine Environment, World Scientific, NJ, USA.
- Sumer, B.M., Kirca, V.S.O. and Fredsoe, J. (2012), "Experimental validation of a mathematical model for seabed liquefaction under waves", Int. J. Offshore Polar Eng., 22(2), 133-141.
- Umeyama, M. (2009), "Changes in turbulent flow structure under combined wave-current motions", J. Waterw Port Coast. Ocean Eng., 135(5), 213-227. https://doi.org/10.1061/(ASCE)0733-950X(2009)135:5(213)
- Wolf, J. and Prandle, D. (1999), "Some observations of wave-current interaction", Coast. Eng., 37, 471-485. https://doi.org/10.1016/S0378-3839(99)00039-3
- Yamamoto, T., Koning, H., Sellmeijer, H. and Hijum, E.V. (1978), "On the response of a poro-elastic bed to water waves", J. Fluid Mech., 87(1), 193-206. https://doi.org/10.1017/S0022112078003006
- Ye, J. and Jeng, D.-S. (2012), "Response of seabed to natural loading-wave and currents", J. Eng. Mech., ASCE, 138(6), 601-613. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000356
- Ye, J., Jeng, D.-S., Wang, R. and Zhu, C. (2013), "Validation of a 2-D semi-coupled numerical model for fluids-structure-seabed interactions", J. Fluid. Struct., 42, 333-357. https://doi.org/10.1016/j.jfluidstructs.2013.04.008
- Ye, J., Jeng, D.-S., Wang, R. and Zhu, C. (2014), "Numerical simulation of the wave-induced dynamic response of poro-elastoplastic seabed foundations and a composite breakwater", Appl. Math. Model., 39(1), 322-347. https://doi.org/10.1016/j.apm.2014.05.031
- You, Z.J. (1994), "A simple model for current velocity profiles in combined wave-current flows", Coast. Eng., 23(3-4), 289-304. https://doi.org/10.1016/0378-3839(94)90007-8
- Zen, K. and Yamazaki, H. (1990), "Mechanism of wave-induced liquefaction and densification in seabed", Soil. Found., 30(4), 90-104. https://doi.org/10.3208/sandf1972.30.4_90
- Zhang, Y., Jeng, D.-S., Gao, F.P. and Zhang, J.-S. (2013a), "An analytical solution for response of a porous seabed to combined wave and current loading", Ocean Eng., 57, 240-247. https://doi.org/10.1016/j.oceaneng.2012.09.001
- Zhang, J.-S., Zhang, Y., Zhang, C. and Jeng, D.-S. (2013b), "Numerical modeling of seabed response to the combined wave-current loading", J. Offshore Mech. Arct. Eng., ASME, 135(3), 031102. https://doi.org/10.1115/1.4023203
- Zienkiewicz, O.C., Chang, C.T. and Bettess, P. (1980), "Drained, undrained, consolidating and dynamic behaviour assumptions in soils", Geotechnique, 30(4), 385-395. https://doi.org/10.1680/geot.1980.30.4.385
Cited by
- Investigation of the stability of submarine sensitive clay slopes underwave-induced pressure pp.1521-0618, 2018, https://doi.org/10.1080/1064119X.2018.1481470
- Wave-Induced Seafloor Instability in the Yellow River Delta: Flume Experiments vol.7, pp.10, 2019, https://doi.org/10.3390/jmse7100356
- A Numerical Approach to Determine Wave (Current)-Induced Residual Responses in a Layered Seabed vol.35, pp.6, 2019, https://doi.org/10.2112/jcoastres-d-19-00023.1