References
- M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmasd, Adsorption of methylene blue on low-cost adsorbent : A review, J. Hazard. Mater., 177, 70-80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047
- M. Dorgan, Y. Ozdemir, and M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue Dyes onto Sepiolite, Dyes Pigm., 75, 701-713 (2007). https://doi.org/10.1016/j.dyepig.2006.07.023
- A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater., 167, 1-9 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.114
- S. Y. An, S. K. Min, I. H. Cha, Y. L. Choi, Y. S. Cho, C. H. Kim, and Y. C. Lee, Decolorization of triphenylmethane and azo dyes by Citrobacter sp", Biotech. Lett., 24, 1037-1040 (2002). https://doi.org/10.1023/A:1015610018103
- X. Jiang and J. Huang, Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics, J. Colloid Interface Sci., 467, 230-238 (2016). https://doi.org/10.1016/j.jcis.2016.01.031
-
S. P. Patil, B. Bethi, G. H. Sonawane, V. S. Shrivastava, and S. Sonawane, Efficient adsorption and photocatalytic degradation of Rhodamine B dye over
$Bi_2O_3$ -bentonite nanocomposites: A kinetic study, J. Ind. Eng. Chem., 34, 356-363 (2016). https://doi.org/10.1016/j.jiec.2015.12.002 - S. Rasalingam, R. Peng, and R. T. Koodali, An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials, Appli. Catal. B : Environ., 174-175, 49-59 (2015). https://doi.org/10.1016/j.apcatb.2015.02.040
- D. Wan, W. Li, G. Wang, K. Chen, L. Lu, and Q. Hu , Adsorption and heterogeneous degradation of rhodamine B on thesurface of magnetic bentonite material, Appl. Surf. Sci., 349, 988-996 (2015). https://doi.org/10.1016/j.apsusc.2015.05.004
- Y. Zhang, J. Wang, L. Wang, R. Feng, and F. Zhang, Study on adsorption properties of QCS/PS-G8-2-8 anion exchange membrane for Rhodamine B, J. Mol. Struct., 1089, 116-123 (2015). https://doi.org/10.1016/j.molstruc.2015.02.041
- L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, and C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies, Desalination, 254, 68-74 (2010). https://doi.org/10.1016/j.desal.2009.12.012
- C. Namasivayam and R. T. Yamuna, Removal of Congo Red from Aqueous S olutions by Biogas Waste Slurry, J. Chem. Technol. Biotechnol., 53, 153-157 (1992).
- H. Lata, S. Mor, and V. K. Garg, Removal of a dye fromsimulated wastewater by adsorption using treated parthenium biomass, J. Hazard. Mater., 153, 213-220 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.039
- C. Namasivayam and D. Kavitha,, Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste, Dyes Pigm., 54, 47-58 (2002). https://doi.org/10.1016/S0143-7208(02)00025-6
- J. J. Lee, Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon, Appl. Chem. Eng., 26, 581-586 (2015). https://doi.org/10.14478/ace.2015.1081
- S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
- A. M. M. Vargas, A. L. Cazetta, A. C. Martins, J. C. G. Moraes, E. E. Garcia, G. F. Gauze, W. F. Costa, and V. C. Almeida, Kinetic and equilibrium studies: Adsorption of food dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods, Chem. Eng. J., 181-182, 243-250 (2012). https://doi.org/10.1016/j.cej.2011.11.073
- I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
- M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
- J. Monika, V. Garg, and D. K. Kadirvelu, Chromium(VI) removal from aqueous solution, using sunflower stem waste, J. Hazard. Mater., 162, 365-372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
- W. S. W. Ngah and M. A. K. M. Hanafiah, Adsorption of copper on rubber (hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies, Biochem. Eng. J., 39, 521-530 (2008). https://doi.org/10.1016/j.bej.2007.11.006
- G. Xing, S. Liu, Q. xu, and Q. Liu, Preparation and adsorption behavior for brilliant blue X-BR of the cost-effective cationic starch intercalated clay composite matrix, Carbohydr. Polym., 87, 1447-1452 (2012). https://doi.org/10.1016/j.carbpol.2011.09.038
- M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, and M. K. Purkait, A novel acorn based adsorbent for the removal of brilliant green, Desalination, 281, 226-233 (2011). https://doi.org/10.1016/j.desal.2011.07.068
- T. S. Anirudhan and P. G. Radhakrishnan, Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodyn., 40, 702-709 (2008). https://doi.org/10.1016/j.jct.2007.10.005
- M. Dorgan and M. Alkan, Removal of methyl violet from aqueous solution by perlite., J. Colloid Interface Sci., 267, 32-41 (2003). https://doi.org/10.1016/S0021-9797(03)00579-4
- S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265, 159-168 (2011). https://doi.org/10.1016/j.desal.2010.07.047
Cited by
- 활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열 vol.28, pp.2, 2016, https://doi.org/10.14478/ace.2016.1132
- 석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거 vol.23, pp.2, 2016, https://doi.org/10.7464/ksct.2017.23.2.188
- Efficient Removal of Organic Contaminants from Aqueous Solution by Highly Compressible Reusable Three-Dimensional Printing Sponges vol.8, pp.6, 2016, https://doi.org/10.1089/3dp.2019.0180