DOI QR코드

DOI QR Code

Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Rhodamin-B onto Granular Activated Carbon

입상 활성탄에 의한 Rhodamin-B의 흡착 열역학, 동력학 및 등량 흡착열에 관한 연구

  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2016.02.15
  • Accepted : 2016.03.18
  • Published : 2016.04.10

Abstract

The adsorption of Rhodamine-B dye using granular activated carbon from aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, pH initial concentration, contact time and temperature. The equilibrium adsorption data showed a good fit to Langmuir isotherm model. Based on the estimated Langmuir separation factor ($R_L$ = 0.0164~0.0314), our adsorption process could be employed as an effective treatment method. The kinetics of adsorption followed the pseudo first order model. Also, the negative values of Gibbs free energy (-4.51~-13.44 kJ/mol) and positive enthalpy (128.97 kJ/mol) indicated that the adsorption was spontaneous and endothermic process. The isosteric heat of adsorption increased with increase in the surface loading indicating lateral interactions between the adsorbed dye molecules.

입상 활성탄을 사용하여 수용액으로부터 Rhodamine-B 염료의 흡착에 대해 조사하였다. 회분식 실험은 흡착제의 양, pH 초기농도와 접촉시간과 온도를 흡착변수로 사용하여 수행하였다. 흡착평형자료는 Langmuir 등온식에 잘 맞았다. 평가된 Langmuir 분리계수($R_L$ = 0.0164~0.0314)로부터 이 흡착공정이 적절한 처리방법이 될 수 있음을 알았다. 흡착속도실험결과는 유사 1차 반응속도식에 잘 맞는 것으로 나타났다. 음수값의 Gibbs 자유에너지(-4.51~-13.44 kJ/mol)와 양수값의 엔탈피(128.97 kJ/mol)는 흡착이 자발적이고 흡열공정으로 진행된다는 것을 나타냈다. 등량흡착열은 흡착된 염료분자들의 측면상호작용에 따라 표면부하량이 증가할수록 커졌다.

Keywords

References

  1. M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmasd, Adsorption of methylene blue on low-cost adsorbent : A review, J. Hazard. Mater., 177, 70-80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047
  2. M. Dorgan, Y. Ozdemir, and M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue Dyes onto Sepiolite, Dyes Pigm., 75, 701-713 (2007). https://doi.org/10.1016/j.dyepig.2006.07.023
  3. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater., 167, 1-9 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.114
  4. S. Y. An, S. K. Min, I. H. Cha, Y. L. Choi, Y. S. Cho, C. H. Kim, and Y. C. Lee, Decolorization of triphenylmethane and azo dyes by Citrobacter sp", Biotech. Lett., 24, 1037-1040 (2002). https://doi.org/10.1023/A:1015610018103
  5. X. Jiang and J. Huang, Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics, J. Colloid Interface Sci., 467, 230-238 (2016). https://doi.org/10.1016/j.jcis.2016.01.031
  6. S. P. Patil, B. Bethi, G. H. Sonawane, V. S. Shrivastava, and S. Sonawane, Efficient adsorption and photocatalytic degradation of Rhodamine B dye over $Bi_2O_3$-bentonite nanocomposites: A kinetic study, J. Ind. Eng. Chem., 34, 356-363 (2016). https://doi.org/10.1016/j.jiec.2015.12.002
  7. S. Rasalingam, R. Peng, and R. T. Koodali, An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials, Appli. Catal. B : Environ., 174-175, 49-59 (2015). https://doi.org/10.1016/j.apcatb.2015.02.040
  8. D. Wan, W. Li, G. Wang, K. Chen, L. Lu, and Q. Hu , Adsorption and heterogeneous degradation of rhodamine B on thesurface of magnetic bentonite material, Appl. Surf. Sci., 349, 988-996 (2015). https://doi.org/10.1016/j.apsusc.2015.05.004
  9. Y. Zhang, J. Wang, L. Wang, R. Feng, and F. Zhang, Study on adsorption properties of QCS/PS-G8-2-8 anion exchange membrane for Rhodamine B, J. Mol. Struct., 1089, 116-123 (2015). https://doi.org/10.1016/j.molstruc.2015.02.041
  10. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, and C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies, Desalination, 254, 68-74 (2010). https://doi.org/10.1016/j.desal.2009.12.012
  11. C. Namasivayam and R. T. Yamuna, Removal of Congo Red from Aqueous S olutions by Biogas Waste Slurry, J. Chem. Technol. Biotechnol., 53, 153-157 (1992).
  12. H. Lata, S. Mor, and V. K. Garg, Removal of a dye fromsimulated wastewater by adsorption using treated parthenium biomass, J. Hazard. Mater., 153, 213-220 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.039
  13. C. Namasivayam and D. Kavitha,, Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste, Dyes Pigm., 54, 47-58 (2002). https://doi.org/10.1016/S0143-7208(02)00025-6
  14. J. J. Lee, Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon, Appl. Chem. Eng., 26, 581-586 (2015). https://doi.org/10.14478/ace.2015.1081
  15. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  16. A. M. M. Vargas, A. L. Cazetta, A. C. Martins, J. C. G. Moraes, E. E. Garcia, G. F. Gauze, W. F. Costa, and V. C. Almeida, Kinetic and equilibrium studies: Adsorption of food dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods, Chem. Eng. J., 181-182, 243-250 (2012). https://doi.org/10.1016/j.cej.2011.11.073
  17. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  18. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  19. J. Monika, V. Garg, and D. K. Kadirvelu, Chromium(VI) removal from aqueous solution, using sunflower stem waste, J. Hazard. Mater., 162, 365-372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  20. W. S. W. Ngah and M. A. K. M. Hanafiah, Adsorption of copper on rubber (hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies, Biochem. Eng. J., 39, 521-530 (2008). https://doi.org/10.1016/j.bej.2007.11.006
  21. G. Xing, S. Liu, Q. xu, and Q. Liu, Preparation and adsorption behavior for brilliant blue X-BR of the cost-effective cationic starch intercalated clay composite matrix, Carbohydr. Polym., 87, 1447-1452 (2012). https://doi.org/10.1016/j.carbpol.2011.09.038
  22. M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, and M. K. Purkait, A novel acorn based adsorbent for the removal of brilliant green, Desalination, 281, 226-233 (2011). https://doi.org/10.1016/j.desal.2011.07.068
  23. T. S. Anirudhan and P. G. Radhakrishnan, Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodyn., 40, 702-709 (2008). https://doi.org/10.1016/j.jct.2007.10.005
  24. M. Dorgan and M. Alkan, Removal of methyl violet from aqueous solution by perlite., J. Colloid Interface Sci., 267, 32-41 (2003). https://doi.org/10.1016/S0021-9797(03)00579-4
  25. S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265, 159-168 (2011). https://doi.org/10.1016/j.desal.2010.07.047

Cited by

  1. 활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열 vol.28, pp.2, 2016, https://doi.org/10.14478/ace.2016.1132
  2. 석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거 vol.23, pp.2, 2016, https://doi.org/10.7464/ksct.2017.23.2.188
  3. Efficient Removal of Organic Contaminants from Aqueous Solution by Highly Compressible Reusable Three-Dimensional Printing Sponges vol.8, pp.6, 2016, https://doi.org/10.1089/3dp.2019.0180