DOI QR코드

DOI QR Code

경질알칸의 탈수소 반응을 위한 산소활용기술 연구 동향

Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes

  • Koh, Hyoung Lim (Department of Chemical Engineering, RCCT, Hankyong National University)
  • 투고 : 2016.01.07
  • 심사 : 2016.02.02
  • 발행 : 2016.04.10

초록

최근 셰일가스의 개발로 프로판, 부탄과 같은 경질알칸으로부터 프로필렌, 부텐, 부타디엔과 같은 올레핀을 제조하는 탈수소 공정에 대한 연구와 상용화가 많이 진행되었다. 특히 직접 탈수소화 반응의 열역학적 한계를 극복하고자 산화적 탈수소 또는 선택적 수소 산화 반응과 같이 산소를 활용한 기술의 연구개발이 진행되거나, 실제 공정에 적용된 사례들도 보고되고 있다. 이에 본 연구에서는 경질알칸의 탈수소 반응을 위한 산소활용기술의 최근 연구동향을 가스상의 산소를 활용하는 방법과 고체산화물의 격자산소를 활용한 기술로 나누어 정리하고, 산소활용기술의 현황과 연구 개발 방향 및 향후 전망에 대해 고찰하였다. 반응물의 반응성에 따라 기체상 산소의 적용이 용이한 경우와 반응성의 조절을 위해 격자산소를 이용하는 기술로 분류할 수 있었고, 전환율을 높이면서 선택도를 낮추지 않는 기술의 개발이 주요한 목표가 되었다.

Due to the great development made in converting the shale gas into the more valuable products, research and commercialization for production technology of olefins like propylene, butenes, butadiene from light alkanes have been intensively investigated. Especially the technology using oxygen like oxidative dehydrogenation or selective hydrogen combustion to overcome thermodynamic limit of direct dehydrogenation conversion has been extensively studied and some cases of applying this technology to the plant scale was reported. In this review, we have categorized the technology into two parts; gas phase oxygen utilization technology and lattice oxygen utilization technology. The trends, results and future direction of the technology are discussed.

키워드

참고문헌

  1. R. J. Hill, D. M. Jarvie, J. Zumberge, M. Henry, and R. M. Pollastro, Oil and gas geochemistry and petroleum system of the Fort Worth Basin, AAPG Bull., 91(4), 445-474 (2007). https://doi.org/10.1306/11030606014
  2. M. M. Bhasin, J. H. McCain, B. B. Vora, T. Imai, and P. R. Pujado, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal. A-Gen., 221, 397 (2001). https://doi.org/10.1016/S0926-860X(01)00816-X
  3. G. E. Keller and M. M. Bhasin, Synthesis of ethylene via oxidative coupling of methane. 1. Determination of active catalysts, J. Catal., 73, 9-19 (1999).
  4. M. M. Bhasin, Feasibility of ethylene synthesis via catalytic oxidative coupling of methane, in: paper presented at the Methane Conversion Symposium, Auckland, New Zealand, 27 April to 1 May (1987).
  5. M. M. Bhasin, Feasibility of Ethylene Synthesis via Oxidative Coupling of Methane, Elsevier, Amsterdam, Stud. Surf. Sci. Catal., 36, 343-357 (1988). https://doi.org/10.1016/S0167-2991(09)60526-7
  6. H. Jachow, Polymetallic oxide materials, World Patent 99/42404 (1999).
  7. G. Descat, Procede d'oxydeshydrogenation d'alcanes en alcenes, World Patent 98/24742 (1998).
  8. S. Wang, K. Murata, T. S. Hamakawa, K. Suzuki, Dehydrogenation of Ethane into Ethylene by Carbon Dioxide over Chromium Supported on Sulfated Silica, Chem. Lett., 28, 569-570 (1999). https://doi.org/10.1246/cl.1999.569
  9. P. Viparelli, P. Ciambelli, L. Lisi, G. Rupooplo, G. Russo, and J. C. Volta, Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts, Appl. Catal. A, 184, 291-301 (1999). https://doi.org/10.1016/S0926-860X(99)00104-0
  10. D. Creaser, B. Andersson, R. R. Hudgins, and P. L. Silverston, Oxygen partial pressure effects on the oxidative dehydrogenation of propane, Chem. Eng. Sci., 54, 4365-4370 (1999). https://doi.org/10.1016/S0009-2509(99)00108-6
  11. Z. M. Fang, Q. Hong, Z. H. Zhou, S. J. Dai, W. Z. Weng, and H. L. Wan, Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method, Catal. Lett., 61, 39-44 (1999). https://doi.org/10.1023/A:1019096116289
  12. R. Rulkens and T. D. Tilley, A Molecular precursor route to active and selective vanadia-silica-zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane, J. Am. Chem. Soc., 120, 9959-9960 (1998). https://doi.org/10.1021/ja981798d
  13. http://www.thyssenkrupp-industrial-solutions.com/fileadmin/documents/brochures/TKIS_STAR_Process.pdf.
  14. R K. Grasselli, D. L. Stern, and J. G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): I. DH ${\rightarrow}$ SHC ${\rightarrow}$ DH catalysts in series (co-fed process mode), Appl. Catal. A-Gen., 189, 1-8 (1999). https://doi.org/10.1016/S0926-860X(99)00224-0
  15. R. K. Grasselli, D. L. Stern, and J. G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion(SHC) II. DH+SHC catalysis physically mixed (redox process mode), Appl. Catal. A-Gen., 189, 9-14 (1999). https://doi.org/10.1016/S0926-860X(99)00195-7
  16. J. G. Tsikoyiannis, D. L. Stern, and R. K. Grasselli, Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation, J. Catal., 184, 77-86 (1999). https://doi.org/10.1006/jcat.1998.2363
  17. G. Rothenberg, E. A. de Graaf, and A. Bliek, Solvent-Free Synthesis of Rechargeable Solid Oxygen Reservoirs for Clean Hydrogen Oxidation, Angew. Chem., 115, 3487-3490 (2003).
  18. L. Oviol, M. Bruns, V. Fridman, J. Merriam, and M. Urbancic, Mind the Gap, Hydrocarbon Eng., September (2012).
  19. V. V. Lunin and O. V. Chetina, Neftekhimiya, 30, 202-206 (1990).
  20. R. Liu, Y. Zhu, Z. Suk, H. Wang, and X. Zhou, Support effects on catalytic performance for selective combustion of hydrogen in the presence of propene, Fuel Process. Technol., 108, 82-88 (2013). https://doi.org/10.1016/j.fuproc.2012.05.027
  21. S. Kaneko, T. Arakawa, M. Ohshima, H. Kurokawa, and H. Miura, Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts, Appl. Catal. A-Gen., 356, 80-87 (2009). https://doi.org/10.1016/j.apcata.2008.12.022
  22. H. Dyrbeck, N. Hammer, M. Ronning, and E. A. Blekkan, Catalytic oxidation of hydrogen over Au/$TiO_2$ catalysts, Top. Catal., 45, 21-24 (2007). https://doi.org/10.1007/s11244-007-0234-7
  23. L. Late, J.-I. Rundereim, and E. A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons 1. Pt-based catalysts, Appl. Catal. A-Gen., 262, 53-61 (2004). https://doi.org/10.1016/j.apcata.2003.11.017
  24. C.-H. Lin, K.-C. Lee, B.-Z. Wan, Development of catalyst system for selective combustion of hydrogen, Appl. Catal. A-Gen., 164, 59-67 (1997). https://doi.org/10.1016/S0926-860X(97)00157-9
  25. L. Late, W. Thelin, and E. A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons Part 2. Metal oxide based catalysts, Appl. Catal. A-Gen., 262, 63-68 (2004). https://doi.org/10.1016/j.apcata.2003.11.018
  26. L. M. van der Zande, E. A. de Graaf, and G. Rothenberg, Design and parallel synthesis of novel selective hydrogen oxidation catalysts and their application in alkane dehydrogenation, Adv. Synth. Catal., 344, 884-889 (2002). https://doi.org/10.1002/1615-4169(200209)344:8<884::AID-ADSC884>3.0.CO;2-U
  27. N. V. Testova, A. S. Shalygin, V. V. Kaichev, T. S. Glazneva, E. A. Paukshtis, and V. N. Parmon, Oxidative dehydrogenation of propane by molecular chlorine, Appl. Catal. A-Gen., 505, 441-446 (2015). https://doi.org/10.1016/j.apcata.2015.05.018
  28. M. D. Putra, S. M. Al-Zahrani, and A. E. Abasaeed, Effect of Sr loading on oxydehydrogenation of propane to propylene over $Al_2O_3$-supported V-Mo catalysts, J. Energy Chem., 22, 778-782 (2013). https://doi.org/10.1016/S2095-4956(13)60103-5
  29. B. Chua, H. Ana, T. A. Nijhuisb, J. C. Schoutenb, and Y. Cheng, A self-redox pure-phase M1 MoVNbTeOx/$CeO_2$ nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane, J. Catal., 329, 471-478 (2015). https://doi.org/10.1016/j.jcat.2015.06.009
  30. G. C. -Galicia, R. S. Ruiz-Martinez, F. Lopez-Isunza, and C. O. Castillo-Araiza, Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/$TiO_2$ catalyst in an industrial-scale packed bed catalytic reactor, Chem. Eng. J., 280(15), 682-694 (2015). https://doi.org/10.1016/j.cej.2015.05.128
  31. B. Chu, L. Truter, T. A. Nijhuis, and Y. Cheng, Performance of phase-pure M1 MoVNbTeOx catalysts by hydrothermal synthesis with different post-treatments for the oxidative dehydrogenation of ethane, Appl. Catal. A-Gen., 498(5), 99-106 (2015). https://doi.org/10.1016/j.apcata.2015.03.039
  32. E. V. Ishchenko, T. Yu. Kardash, R. V. Gulyaev, A. V. Ishchenko, V. I. Sobolev, and V. M. Bondareva, Effect of K and Bi doping on the M1 phase in MoVTeNbO catalysts for ethane oxidative conversion to ethylene, Appl. Catal. A-Gen., 514(25), 1-13 (2016). https://doi.org/10.1016/j.apcata.2015.12.018
  33. J. Santander, E. Lopez, A. Diez, M. Dennehy, M. Pedernera, and G. Tonetto, Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane, Chem. Eng. J., 255, 185-194 (2014). https://doi.org/10.1016/j.cej.2014.06.048
  34. G. Xiong and J. Sang, Oxidative dehydrogenation of propane over nanodiamond modified by molybdenum oxide, J. Mol. Catal. A-Chem., 392, 315-320 (2014). https://doi.org/10.1016/j.molcata.2014.05.037
  35. M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of the COx species, Chem. Eng. J., 250(15), 14-24 (2014). https://doi.org/10.1016/j.cej.2014.04.002
  36. S. A. Al-Ghamdi, H. I. de Lasa, Propylene production via propane oxidative dehydrogenation over VOx/${\gamma}$-$Al_2O_3$ catalyst, Fuel, 128(15), 120-140 (2014). https://doi.org/10.1016/j.fuel.2014.02.033
  37. M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst: Application of the DOE and ANN methodologies, J. Ind. Eng. Chem., 20(4), 2236-2247 (2014). https://doi.org/10.1016/j.jiec.2013.09.056
  38. K. H. Kang, T. H. Kim, W. C. Choi, Y.-K. Park, U. G. Hong, D. S. Park, C.-J. Kim, and I. K. Song, Dehydrogenation of propane to propylene over CrOy-$CeO_2$-$K_2O$/${\gamma}$-$Al_2O_3$ catalysts: Effect of cerium content, Catal. Comm., 72(5), 68-72 (2015). https://doi.org/10.1016/j.catcom.2015.09.009
  39. A. H. S. Kootenaei, J. Towfighi, A. Khodadadi, and Y. Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane, Appl. Surf. Sci., 298(15), 26-35 (2014). https://doi.org/10.1016/j.apsusc.2013.12.172
  40. A. Wegrzyniak, S. Jarczewski, A. Wach, E. Hedrzak, P. Kustrowski, and P. Michorczyk, Catalytic behaviour of chromium oxide supported on CMK-3 carbon replica in the dehydrogenation propane to propene, Appl Catal A-Gen., 508, 1-9 (2015). https://doi.org/10.1016/j.apcata.2015.10.002
  41. Y. Shan, Z. Sui, Y. Zhu, De Chen, and X. Zhou, Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation, Chem. Eng. J., 278(15), 240-248 (2015). https://doi.org/10.1016/j.cej.2014.09.107
  42. G. Wu, F. Hei, N. Zhang, N. Guan, L. Li, and W. Grunert, Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: Characterization and performance, Appl Catal A-Gen., 468(5), 230-239 (2013). https://doi.org/10.1016/j.apcata.2013.08.051
  43. M. Hoj, A. D. Jensen, and J.-D. Grunwaldt, Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis, Appl Catal A-Gen., 451(31), 207-215 (2013). https://doi.org/10.1016/j.apcata.2012.09.037
  44. Decavanadate-intercalated Ni-Al hydrotalcites as precursors of mixed oxides for the oxidative dehydrogenation of propane, Catal. Today, 192(1), 30, 36-43 (2012). https://doi.org/10.1016/j.cattod.2012.04.043
  45. F. Ma, S. Chen, Y. Wang, F. Chen, and W. Lu, Characterization of redox and acid properties of mesoporous Cr-$TiO_2$ and its efficient performance for oxidative dehydrogenation of propane, Appl Catal A-Gen., 427-428(15), 145-154 (2012). https://doi.org/10.1016/j.apcata.2012.03.043
  46. L. Kong, J. Li, Z. Zhao, Q. Liu, Q. Sun, J. Liu, and Y. Wei, Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: The effect of MoOx dispersion, Appl Catal A-Gen., 510(25), 84-97 (2016). https://doi.org/10.1016/j.apcata.2015.11.016
  47. L. Wang, W. Chu, C. Jiang, Y. Liu, J. Wen, and Z. Xie, Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts, J. Natural Gas Chem., 21(1), 43-48 (2012). https://doi.org/10.1016/S1003-9953(11)60331-9
  48. M. D. Putra, S. M. Al-Zahrani, and A. E. Abasaeed, Oxidative dehydrogenation of propane to propylene over $Al_2O_3$-supported Sr-V-Mo catalysts, Catal. Comm., 14(1), 107-110 (2011). https://doi.org/10.1016/j.catcom.2011.07.025
  49. A. Ates, C. Hardacre, and A. Goguet, Oxidative dehydrogenation of propane with $N_2O$ over Fe-ZSM-5 and Fe-$SiO_2$: Influence of the iron species and acid sites, Appl Catal A-Gen., 441-442(28), 30-41 (2012). https://doi.org/10.1016/j.apcata.2012.06.038
  50. N. I. Kuznetsova, G. Y. Popova, L. I. Kuznetsova, V. I. Zaikovskii, S. V. Koscheev, T. V. Andrushkevich, A. S. Lisitsyn, V. A. Likholobov, and S. Han, Improving the performance of Pt-$H_3PMo_{12}O_{40}$ catalysts in the selective dehydrogenation of propane with $O_2$ and $H_2$, Catal. Today, 245(1), 179-185 (2015). https://doi.org/10.1016/j.cattod.2014.07.018
  51. A. Lofberg, T. Giornelli, S. Paul, and E. B.-Richard, Catalytic coatings for structured supports and reactors: VOx/$TiO_2$ catalyst coated on stainless steel in the oxidative dehydrogenation of propane, Appl Catal A-Gen., 391(1-2), 43-51 (2011). https://doi.org/10.1016/j.apcata.2010.09.002