참고문헌
- R. J. Hill, D. M. Jarvie, J. Zumberge, M. Henry, and R. M. Pollastro, Oil and gas geochemistry and petroleum system of the Fort Worth Basin, AAPG Bull., 91(4), 445-474 (2007). https://doi.org/10.1306/11030606014
- M. M. Bhasin, J. H. McCain, B. B. Vora, T. Imai, and P. R. Pujado, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal. A-Gen., 221, 397 (2001). https://doi.org/10.1016/S0926-860X(01)00816-X
- G. E. Keller and M. M. Bhasin, Synthesis of ethylene via oxidative coupling of methane. 1. Determination of active catalysts, J. Catal., 73, 9-19 (1999).
- M. M. Bhasin, Feasibility of ethylene synthesis via catalytic oxidative coupling of methane, in: paper presented at the Methane Conversion Symposium, Auckland, New Zealand, 27 April to 1 May (1987).
- M. M. Bhasin, Feasibility of Ethylene Synthesis via Oxidative Coupling of Methane, Elsevier, Amsterdam, Stud. Surf. Sci. Catal., 36, 343-357 (1988). https://doi.org/10.1016/S0167-2991(09)60526-7
- H. Jachow, Polymetallic oxide materials, World Patent 99/42404 (1999).
- G. Descat, Procede d'oxydeshydrogenation d'alcanes en alcenes, World Patent 98/24742 (1998).
- S. Wang, K. Murata, T. S. Hamakawa, K. Suzuki, Dehydrogenation of Ethane into Ethylene by Carbon Dioxide over Chromium Supported on Sulfated Silica, Chem. Lett., 28, 569-570 (1999). https://doi.org/10.1246/cl.1999.569
- P. Viparelli, P. Ciambelli, L. Lisi, G. Rupooplo, G. Russo, and J. C. Volta, Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts, Appl. Catal. A, 184, 291-301 (1999). https://doi.org/10.1016/S0926-860X(99)00104-0
- D. Creaser, B. Andersson, R. R. Hudgins, and P. L. Silverston, Oxygen partial pressure effects on the oxidative dehydrogenation of propane, Chem. Eng. Sci., 54, 4365-4370 (1999). https://doi.org/10.1016/S0009-2509(99)00108-6
- Z. M. Fang, Q. Hong, Z. H. Zhou, S. J. Dai, W. Z. Weng, and H. L. Wan, Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method, Catal. Lett., 61, 39-44 (1999). https://doi.org/10.1023/A:1019096116289
- R. Rulkens and T. D. Tilley, A Molecular precursor route to active and selective vanadia-silica-zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane, J. Am. Chem. Soc., 120, 9959-9960 (1998). https://doi.org/10.1021/ja981798d
- http://www.thyssenkrupp-industrial-solutions.com/fileadmin/documents/brochures/TKIS_STAR_Process.pdf.
-
R K. Grasselli, D. L. Stern, and J. G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): I. DH
${\rightarrow}$ SHC${\rightarrow}$ DH catalysts in series (co-fed process mode), Appl. Catal. A-Gen., 189, 1-8 (1999). https://doi.org/10.1016/S0926-860X(99)00224-0 - R. K. Grasselli, D. L. Stern, and J. G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion(SHC) II. DH+SHC catalysis physically mixed (redox process mode), Appl. Catal. A-Gen., 189, 9-14 (1999). https://doi.org/10.1016/S0926-860X(99)00195-7
- J. G. Tsikoyiannis, D. L. Stern, and R. K. Grasselli, Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation, J. Catal., 184, 77-86 (1999). https://doi.org/10.1006/jcat.1998.2363
- G. Rothenberg, E. A. de Graaf, and A. Bliek, Solvent-Free Synthesis of Rechargeable Solid Oxygen Reservoirs for Clean Hydrogen Oxidation, Angew. Chem., 115, 3487-3490 (2003).
- L. Oviol, M. Bruns, V. Fridman, J. Merriam, and M. Urbancic, Mind the Gap, Hydrocarbon Eng., September (2012).
- V. V. Lunin and O. V. Chetina, Neftekhimiya, 30, 202-206 (1990).
- R. Liu, Y. Zhu, Z. Suk, H. Wang, and X. Zhou, Support effects on catalytic performance for selective combustion of hydrogen in the presence of propene, Fuel Process. Technol., 108, 82-88 (2013). https://doi.org/10.1016/j.fuproc.2012.05.027
- S. Kaneko, T. Arakawa, M. Ohshima, H. Kurokawa, and H. Miura, Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts, Appl. Catal. A-Gen., 356, 80-87 (2009). https://doi.org/10.1016/j.apcata.2008.12.022
-
H. Dyrbeck, N. Hammer, M. Ronning, and E. A. Blekkan, Catalytic oxidation of hydrogen over Au/
$TiO_2$ catalysts, Top. Catal., 45, 21-24 (2007). https://doi.org/10.1007/s11244-007-0234-7 - L. Late, J.-I. Rundereim, and E. A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons 1. Pt-based catalysts, Appl. Catal. A-Gen., 262, 53-61 (2004). https://doi.org/10.1016/j.apcata.2003.11.017
- C.-H. Lin, K.-C. Lee, B.-Z. Wan, Development of catalyst system for selective combustion of hydrogen, Appl. Catal. A-Gen., 164, 59-67 (1997). https://doi.org/10.1016/S0926-860X(97)00157-9
- L. Late, W. Thelin, and E. A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons Part 2. Metal oxide based catalysts, Appl. Catal. A-Gen., 262, 63-68 (2004). https://doi.org/10.1016/j.apcata.2003.11.018
- L. M. van der Zande, E. A. de Graaf, and G. Rothenberg, Design and parallel synthesis of novel selective hydrogen oxidation catalysts and their application in alkane dehydrogenation, Adv. Synth. Catal., 344, 884-889 (2002). https://doi.org/10.1002/1615-4169(200209)344:8<884::AID-ADSC884>3.0.CO;2-U
- N. V. Testova, A. S. Shalygin, V. V. Kaichev, T. S. Glazneva, E. A. Paukshtis, and V. N. Parmon, Oxidative dehydrogenation of propane by molecular chlorine, Appl. Catal. A-Gen., 505, 441-446 (2015). https://doi.org/10.1016/j.apcata.2015.05.018
-
M. D. Putra, S. M. Al-Zahrani, and A. E. Abasaeed, Effect of Sr loading on oxydehydrogenation of propane to propylene over
$Al_2O_3$ -supported V-Mo catalysts, J. Energy Chem., 22, 778-782 (2013). https://doi.org/10.1016/S2095-4956(13)60103-5 -
B. Chua, H. Ana, T. A. Nijhuisb, J. C. Schoutenb, and Y. Cheng, A self-redox pure-phase M1 MoVNbTeOx/
$CeO_2$ nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane, J. Catal., 329, 471-478 (2015). https://doi.org/10.1016/j.jcat.2015.06.009 -
G. C. -Galicia, R. S. Ruiz-Martinez, F. Lopez-Isunza, and C. O. Castillo-Araiza, Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/
$TiO_2$ catalyst in an industrial-scale packed bed catalytic reactor, Chem. Eng. J., 280(15), 682-694 (2015). https://doi.org/10.1016/j.cej.2015.05.128 - B. Chu, L. Truter, T. A. Nijhuis, and Y. Cheng, Performance of phase-pure M1 MoVNbTeOx catalysts by hydrothermal synthesis with different post-treatments for the oxidative dehydrogenation of ethane, Appl. Catal. A-Gen., 498(5), 99-106 (2015). https://doi.org/10.1016/j.apcata.2015.03.039
- E. V. Ishchenko, T. Yu. Kardash, R. V. Gulyaev, A. V. Ishchenko, V. I. Sobolev, and V. M. Bondareva, Effect of K and Bi doping on the M1 phase in MoVTeNbO catalysts for ethane oxidative conversion to ethylene, Appl. Catal. A-Gen., 514(25), 1-13 (2016). https://doi.org/10.1016/j.apcata.2015.12.018
- J. Santander, E. Lopez, A. Diez, M. Dennehy, M. Pedernera, and G. Tonetto, Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane, Chem. Eng. J., 255, 185-194 (2014). https://doi.org/10.1016/j.cej.2014.06.048
- G. Xiong and J. Sang, Oxidative dehydrogenation of propane over nanodiamond modified by molybdenum oxide, J. Mol. Catal. A-Chem., 392, 315-320 (2014). https://doi.org/10.1016/j.molcata.2014.05.037
- M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of the COx species, Chem. Eng. J., 250(15), 14-24 (2014). https://doi.org/10.1016/j.cej.2014.04.002
-
S. A. Al-Ghamdi, H. I. de Lasa, Propylene production via propane oxidative dehydrogenation over VOx/
${\gamma}$ -$Al_2O_3$ catalyst, Fuel, 128(15), 120-140 (2014). https://doi.org/10.1016/j.fuel.2014.02.033 - M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst: Application of the DOE and ANN methodologies, J. Ind. Eng. Chem., 20(4), 2236-2247 (2014). https://doi.org/10.1016/j.jiec.2013.09.056
-
K. H. Kang, T. H. Kim, W. C. Choi, Y.-K. Park, U. G. Hong, D. S. Park, C.-J. Kim, and I. K. Song, Dehydrogenation of propane to propylene over CrOy-
$CeO_2$ -$K_2O$ /${\gamma}$ -$Al_2O_3$ catalysts: Effect of cerium content, Catal. Comm., 72(5), 68-72 (2015). https://doi.org/10.1016/j.catcom.2015.09.009 - A. H. S. Kootenaei, J. Towfighi, A. Khodadadi, and Y. Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane, Appl. Surf. Sci., 298(15), 26-35 (2014). https://doi.org/10.1016/j.apsusc.2013.12.172
- A. Wegrzyniak, S. Jarczewski, A. Wach, E. Hedrzak, P. Kustrowski, and P. Michorczyk, Catalytic behaviour of chromium oxide supported on CMK-3 carbon replica in the dehydrogenation propane to propene, Appl Catal A-Gen., 508, 1-9 (2015). https://doi.org/10.1016/j.apcata.2015.10.002
- Y. Shan, Z. Sui, Y. Zhu, De Chen, and X. Zhou, Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation, Chem. Eng. J., 278(15), 240-248 (2015). https://doi.org/10.1016/j.cej.2014.09.107
- G. Wu, F. Hei, N. Zhang, N. Guan, L. Li, and W. Grunert, Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: Characterization and performance, Appl Catal A-Gen., 468(5), 230-239 (2013). https://doi.org/10.1016/j.apcata.2013.08.051
- M. Hoj, A. D. Jensen, and J.-D. Grunwaldt, Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis, Appl Catal A-Gen., 451(31), 207-215 (2013). https://doi.org/10.1016/j.apcata.2012.09.037
- Decavanadate-intercalated Ni-Al hydrotalcites as precursors of mixed oxides for the oxidative dehydrogenation of propane, Catal. Today, 192(1), 30, 36-43 (2012). https://doi.org/10.1016/j.cattod.2012.04.043
-
F. Ma, S. Chen, Y. Wang, F. Chen, and W. Lu, Characterization of redox and acid properties of mesoporous Cr-
$TiO_2$ and its efficient performance for oxidative dehydrogenation of propane, Appl Catal A-Gen., 427-428(15), 145-154 (2012). https://doi.org/10.1016/j.apcata.2012.03.043 - L. Kong, J. Li, Z. Zhao, Q. Liu, Q. Sun, J. Liu, and Y. Wei, Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: The effect of MoOx dispersion, Appl Catal A-Gen., 510(25), 84-97 (2016). https://doi.org/10.1016/j.apcata.2015.11.016
- L. Wang, W. Chu, C. Jiang, Y. Liu, J. Wen, and Z. Xie, Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts, J. Natural Gas Chem., 21(1), 43-48 (2012). https://doi.org/10.1016/S1003-9953(11)60331-9
-
M. D. Putra, S. M. Al-Zahrani, and A. E. Abasaeed, Oxidative dehydrogenation of propane to propylene over
$Al_2O_3$ -supported Sr-V-Mo catalysts, Catal. Comm., 14(1), 107-110 (2011). https://doi.org/10.1016/j.catcom.2011.07.025 -
A. Ates, C. Hardacre, and A. Goguet, Oxidative dehydrogenation of propane with
$N_2O$ over Fe-ZSM-5 and Fe-$SiO_2$ : Influence of the iron species and acid sites, Appl Catal A-Gen., 441-442(28), 30-41 (2012). https://doi.org/10.1016/j.apcata.2012.06.038 -
N. I. Kuznetsova, G. Y. Popova, L. I. Kuznetsova, V. I. Zaikovskii, S. V. Koscheev, T. V. Andrushkevich, A. S. Lisitsyn, V. A. Likholobov, and S. Han, Improving the performance of Pt-
$H_3PMo_{12}O_{40}$ catalysts in the selective dehydrogenation of propane with$O_2$ and$H_2$ , Catal. Today, 245(1), 179-185 (2015). https://doi.org/10.1016/j.cattod.2014.07.018 -
A. Lofberg, T. Giornelli, S. Paul, and E. B.-Richard, Catalytic coatings for structured supports and reactors: VOx/
$TiO_2$ catalyst coated on stainless steel in the oxidative dehydrogenation of propane, Appl Catal A-Gen., 391(1-2), 43-51 (2011). https://doi.org/10.1016/j.apcata.2010.09.002