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ABSTRACT. In this paper, we obtain that every biharmonic non-degenerate hypersurfaces
in semi-Euclidean space E° with constant scalar curvature of diagonal shape operator has
zero mean curvature.

1. Introduction

In 1964, Eells and Sampson [16] introduced the notion of poly-harmonic
maps as a natural generalization of the well-known harmonic maps. Thus, while
¢ : (M,g9) — (N,h) harmonic maps between Riemannian manifolds are critical
points of the energy functional E(¢) = % [}, |d¢|*v,, the biharmonic maps are crit-
ical points of the bienergy functional E2(¢) = % [,, |7(¢)[*vy, where T = traceVde
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is the tension field of ¢.

The study of biharmonic submanifolds in Euclidean spaces was initiated by B.
Y. Chen in the middle of 1980s. In particular, he proved that biharmonic surfaces in
Euclidean 3-spaces are minimal. There are many non-existence results in Euclidean
spaces developed by I. Dimitric in his doctoral thesis [14] and paper [15]. Based
on these results, B. Y. Chen [7] in 1991 posed the following well-known conjecture:
The only biharmonic submanifolds of Euclidean spaces are the minimal ones. Also,
the conjecture was later proved for hypersurfaces in Euclidean 4-spaces [22] and for
hypersurfaces with three distinct principal curvatures in E° [23]. Recently, it was
proved that Chen’s conjecture is true for §(2)-ideal and §(3)-ideal hypersurfaces of
a Euclidean space of arbitrary dimension [11] and for hypersurfaces in Euclidean
spaces of arbitrary dimension with three distinct principal curvatures [20]. Also,
it was shown that the conjecture is true for every biharmonic hypersurfaces in E°
with zero scalar curvature [12]. The conjecture is a local problem and understanding
local structure of biharmonic submanifolds to the point of minimality is a complex
task. That may be the possible reason for the conjecture to be open till now in
general so far. The global version of Chen’s conjecture for biharmonic submanifolds
in Euclidean space was studied in [17]. There exist lots of examples of proper
biharmonic submanifolds in spheres (see, for instance [2-6, 18-19]).

In contrast to the submanifolds of Euclidean spaces, Chen’s conjecture is not
true always for submanifolds of pseudo-Euclidean spaces. For example, B. Y. Chen
and S. Ishikawa [9, 10] obtained some examples of proper biharmonic surfaces in
4-dimensional pseudo-Euclidean spaces E? for s = 1, 2, 3, (see also [8]). But for
hypersurfaces in pseudo-Euclidean spaces, it is reasonable that Chen’s conjecture is
also right. It was proved that biharmonic surfaces in pseudo-Euclidean 3-spaces are
minimal [9, 10]. In [13], F. Defever et al. proved that the biharmonic conjecture
is true for non-degenerate hypersurfaces of semi-Euclidean 4-spaces. A. Arvani-
toyeorgos et al. [1] proved that biharmonic Lorentzian hypersurfaces in Minkowski
4-spaces are minimal. Recently, it was proved that every biharmonic hypersurfaces
with three distinct principal curvatures of diagonal shape operator in E2 must be
minimal [21]. Tt led us to investigate biharmonic hypersurface in semi-Euclidean
5-spaces with four distinct principal curvatures.

In this paper, we study biharmonic non-degenerate hypersurfaces of constant
scalar curvature in semi-Euclidean spaces E° with diagonal shape operator.

2. Preliminaries

Let (M2, g), = 0,1,2,3,4, be a 4-dimensional hypersurface isometrically im-
mersed in a 5-dimensional semi-Euclidean space (E?,g), s = 0,1,2,3,4,5 and
9 = Gz We denote by ¢ unit normal vector to M} with g(£,€) = ¢, where
e = +1, according as M? is pseudo-Riemannian or Riemannian hypersurface.

Let V and V denote linear connections on E2 and M?, respectively. Then, the
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Gauss and Weingarten formulae are given by

(2.1) VxY =VxY +h(X,Y), V X,Y e (TM?),

(2.2) Vxé = —AeX,

where h is the second fundamental form and A is the shape operator. It is well
known that the second fundamental form h and shape operator A are related by

(2.3) g(h(X,Y),§) = g(Ac X, Y).
The mean curvature is given by
(2.4) eH = itraceA.
The Gauss and Codazzi equations are given by
(2.5) R(X,Y)Z = g(AY, Z)AX — g(AX, Z)AY,
(2.6) (VxA)Y = (VyA)X,

respectively, where R is the curvature tensor and
(2.7) (VxA)Y =VxAY — A(VxY),

for all X,Y,Z € T(TM?2).

A biharmonic submanifold in a semi-Euclidean space is called proper biharmonic
if it is not minimal. The necessary and sufficient condition for M to be biharmonic
in EY is

(2.8) AH + eHtraceA? = 0,

(2.9) A(gradH) + 2¢ HgradH = 0,

where H denotes the mean curvature. Also, the Laplace operator A of a scalar
valued function f is given by [8]

1
(2.10) Af == eileieif —Veeif),
i=1

where {e1, ea, €3, €4} is an orthonormal local tangent frame on M2 and g(e;, e;) = €;.

A vector X in E° is called spacelike, timelike or lightlike according as
(X, X) >0, g(X,X) <0or g(X,X) = 0, respectively. A non-degenerate
hypersurface M2 of E® is called Riemannian or pseudo-Riemannian according as
the induced metric on M, from the indefinite metric on E? is definite or indefinite.
A shape operator of pseudo-Riemannian hypersurfaces is not diagonalizable always
unlike the Riemannian hypersurfaces.
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3. Biharmonic Non-Degenerate Hypersurfaces of Constant Scalar Cur-
vature in E?

We have the following cases.
(a) The case of four distinct principal curvatures

In this section, we study biharmonic non-degenerate hypersurfaces Riemannian
or pseudo-Riemannian M2 with diagonal shape operator. We also assume that mean
curvature is not constant and gradH # 0. Assuming non constant mean curvature
implies the existence of an open connected subset U of M, with grad,H # 0 for
all p € U. From (2.9), it is easy to see that gradH is an eigenvector of the shape
operator A with the corresponding principal curvature —2¢H. The gradH can be
spacelike or timelike. Without losing generality, we choose e; in the direction of
gradH and therefore shape operator A of hypersurfaces will take the following form
with respect to a suitable frame {e1, ea,e3,€4}

—2cH
_ A2
(3.1) A = As
A
The gradH can be expressed as
4
(3.2) gradH = Z e;(H)e;.
i=1

As we have taken e; parallel to gradH, consequently
(33) el(H) #O,GQ(H) :0,63(H) 20,64(H) =0.

We express

4
(3.4) Ve =Y exwher, i,j=1,2,3,4.

k=1
Using compatibility conditions V., g(e;,e;) =0 and V., g(e;, e;) = 0, we obtain
(3.5) wi; =0, wi; +wh; =0,

for i # j,and 4,5,k =1,2,3,4.

From Codazzi equation (2.6), we have g((V¢,A)ej,e;) = g((Ve; A)es,e;) and
then using (2.7), (3.1) and (3.4), we obtain

(36) 6j6¢()\j) = ()\1 — )\j)wj

Ji>
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and similarly, g((Ve, A)ej, ex) = g((Ve, A)es, ex) gives
(3.7) (A = X))l = (e = Ay
respectively, for distinct 4,5,k = 1,2, 3,4.
Since \; = —2¢H, from (3.3), we get
(3.8) e1(A1) # 0,e2(A1) =0,e3(A1) =0,e4(A1) = 0.
Also, it is easy to show that
lei e;](A) =0, 1,5 =2,3,4,
which gives
(3.9) wi = Wi
fori+# jand i,j5 =2,3,4.

Now, we show that A; # A1,j = 2,3,4. In fact, if A; = Ay for j # 1, then from
(3.6), we find

(3.10) ejer(N;) = (M = Ajwl, =0,
which contradicts the first expression of (3.8).

Since M has four distinct principal curvatures, from (2.4), we obtain that
(3.11) Ao+ A3+ Ay = 62H.

Putting i # 1,7 = 1 in (3.6) and using (3.8) and (3.5), we find
(3.12) wi; =0, i=1,2,3,4.

Putting k = 1,5 # 4, and i, = 2,3,4 in (3.7), and using (3.9), we get
(3.13) wl =wl :w% :wgl =0, j#i,and 4,5 =2,3,4.

Thus, we have the following:

Lemma 3.1. Let M r =0,1,2,3,4, be a biharmonic non-degenerate hypersurface
of non-constant mean curvature with four distinct principal curvatures in semi-
Euclidean space E3,s = 0,1,2,3,4,5, having the shape operator given by (3.1) with
respect to suitable orthonormal frame {e1,ea,e3,e4}. Then, we obtain

(3.14) Vee; =0, i=1,234,
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(3.15) V.1 =whee, i=2,34,
4 .
(3.16) Veei= Y wheje, i=2,34,
i#j,j=1
4
(3.17) Veej= Y wheper, i,j=2,3,4,and i # j,
k#j,k=2

where wi; satisfy (3.5) and (3.6) fori,j =1,2,3,4.

Evaluating Riemannian curvatures, using Lemma 3.1, Gauss equation and com-
paring the coefficients with respect to an orthonormal frame {ey, eq, e3, e4}, we find
the following;:

oX =e1,Y =€y, 7 = ey,

(3.18) e1(wig)ea — (was)? = —2ee1 H)y.
o X = 617Y = 637Z = €1,
(319) 61(&1;3)63 - (w§3)2 = 72561H>\3.

oX =ec1,Y =e4,Z = ey,

(3.20) e1(wiy)es — (wig)? = —2ee1 H\y.
oX = 617Y = 627Z = €2,

(3.21) e1(whs)ea — wipwyy = 0.

(3.22) e1(why)€r — Wipway = 0.
oX = 617Y = 637Z = €3,

(3.23) e1(wh)es — wizwsz = 0.

(3.24) el(w§3)63 - w§3w§3 =0.
oX = 617Y = 647Z = €4,

(3.25) e1(why)es — wiywyy = 0.

(3.26) e1(wiy)es — wiywiy = 0.
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.X:627Y263,Z:62,

(3.27) es(wis) + es(wiy) — ‘51“?2“2%3 — €awpwis — €2(wd,)? — e3(wi;)?
+(w32w23 - w§4w23 - WZ2W§4)€4 = €2€3A2)3.

(3.28) e3(way) + 63w§2w§3 — €owiywas = 0.

(3.29) e3(why) + €3wdywis — eawdywiy = 0.
oX = GQ,Y: 647Z: €2,

3.30 62(“124) + 64(‘032) - 61”%2%14 - 53”%2”24 — €2 (W§2)2 — € (%%4)2
( . ) 3,3 _ . 4 4 2 2 _ Ao\
+(Wiawsy — Wipwiz — W3,wWis)€3 = €2€4 Aoy

(3.31) 64(0)%2) + 64(,0‘212(4)414 - 620}320}%2 =0.

(3.32) ea (wgz) + 64(4)32(4)24 - 62w§2w§’2 =0.
oX = €3,Y: €4,Z: €3,

3.33 63(“)24) + 64(W§3) - 61‘4‘%3“&4 - 52‘*’%3“’34 - 63(W§3)2 — € (W24)2
(3.33) 2V 4% 33 _ N\
+(W34wis — W3oWas — WiaWsy )2 = €3€4A3)4.

(3.34) ea (wég) + 64w§3wi4 - 63w§3w§3 =0.
(3.35) €4 (w§3) + 64w§‘3wz4 - 63w§3w§3 =0.

o X =e3,Y =e3,7Z = e,

(3.36) eg(w§3) + 62w§3w%2 — 63w§3w§3 =0.

(3.37) e2(Wi3) + E2wiswhy — €3wrzwss = 0.
o X =e9,Y =ey4,Z = ey,

(3.38) 62((4)414) + egwi4wé2 — e4wz4wi4 =0.

(3.39) €2(Wi4) + 62w§4w§2 — e4wi4wi‘4 =0.
oX = 637Y: 647Z: €4,

(3.40) e3(wiy) + eswd,wis — eqwiwi, = 0.
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(3.41) e3(wiy) + eawiywl; — cawiywiy = 0.
From (3.1) and Gauss equation, the scalar curvature p is given by
(3.42) p=12H? — \3 — \3 — \].
Using (2.5), (2.8), (2.10), (3.1) and Lemma 3.1, we find
(343)  —ererer(H) + (eawny + €3w3y + eawiy)erer (H) + eH(16H? — p) = 0.
From (3.3) and Lemma 3.1, we obtain
(3.44) e;e1(H) =0, i=2,3,4.
For constant scalar curvature p, using (3.43) and (3.44), we get
(3.45) ei(€awyo + €3wis + €4wiy) = 0, i=2,3,4.
Also, using Lemma 3.1, it is easy to see that
(3.46) [e1, 6] = ew}ies, i=2,3,4.

Now, we have

Lemma 3.2. Let M} r = 0,1,2,3,4, be a biharmonic non-degenerate hypersur-
face of constant scalar curvature with four distinct principal curvatures in semi-
Euclidean space E?;s = 0,1,2,3,4,5, having the shape operator given by (5.1)
with respect to suitable orthonormal frame {e1,es,e3,eq}. Then, ei(A;) = 0, for
1,7 =2,3,4, and i # j.

Proof. Operating with e on both sides of (3.42), (3.11) and using (3.6), we find
(347) ()\2 - )\4)20.)2464 + (/\2 - )\3)2(4)?2)363 =0.
Differentiating (3.47) along e; and using (3.6), (3.23), (3.25), we get

[—262(/\1 — )\2)()\2 - )\4)&)52 + 64(2)\1 + /\2 - 3)\4)()\2 — /\4)0)414](4)2464 + [—262(/\1 —
)\2)()\2 — )\3)&152 + 63(2)\1 + AQ - 3)\3)()\2 - Ag)&)%3]w§363 =0.

and using (3.47) in the above equation, we get

[262()\1 — /\2)(/\3 — )\4)0.)%2 + 64(2)\1 + )\2 — 3)\4)()\2 — )\3)(4)[14

3.48
( ) —63(2)\1 + Ao — 3)\3)()\2 - )\4)0)%3}(.054 =0.

Similarly, acting with e; and es on (3.11), successively and using (3.6), (3.45),
(3.36), (3.38) and (3.47), subsequently, we obtain

(349) [62()\4 — )\3)&)52 + 64()\3 — )\2)&)414 + 63()\2 — )\4)0.)%3]&124 =0.
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Equations (3.48) and (3.49) show that either w},, or the expression between
square brackets, has to vanish. We now prove that w3, has to be zero. In fact, if
w3, # 0, then the expressions between square brackets has to be zero:

262()\1 - AQ)(Ag - )\4)&)%2 + 64(2)\1 + )\2 - 3)\4)()\2 - )\3)&]&4

(3.50) —e3(2A1 + g — 3A3)(Ag — Ag)wids = 0.

(3.51) €2(A1 — A3)wids + €a( A3 — A2)wiy + e3(A2 — A\g)wis = 0.
Eliminating wi, from (3.50) and (3.51), we get
(3.52) (A2 — A3) (A2 — /\4)(630)31)3 +eqwpy) =0,
which shows that
(3.53) €3wig + €qwiy = 0.
If (3.53) is true, then using it to eliminate wi,, from (3.50) and (3.51), we find

262()\1 — )\2)()\3 — )\4)(4}%2 + 64[(2)\1 + )\2 — 3)\4)()\2 — )\3)

(3.54) +(2A1 + A2 — 3X3) (A2 — A\y)]wi, = 0.

(3.55) ea(Ma — A3)wyy + €4(As + Mg — 2X0)wy, = 0.
From (3.54) and (3.55), we obtain
(3.56) (A2 — A3)(A2 — A\q) =0,

which is contradiction of the fact that principal curvatures are distinct. Therefore,
w3, = 0, which gives w2, = 0 in view of (3.47). Consequently, ez(A\3) = e2(A\4) = 0.

Now, we claim e3(A2) = e3(Ag) = 0. To prove this operating with es on both
sides of (3.42), (3.11) and using (3.6), we find

(357) (/\3 - )\4)2(412464 + ()\3 - /\2)2(4)%262 =0.
Differentiating (3.57) along e; and using (3.6), (3.21) and (3.26), we get

[7263()\1 — Ag)()\g — )\4)&)%3 + 64(2)\1 + )\3 - 3)\4)()\3 - )\4)&)&4}&)2464 + [*263()\1 —
)\3)()\3 — )\2)&1%3 + 62(2)\1 + )\3 - 3)\2)()\3 - )\2)(,{}%2]00%262 =0.

Using (3.57) in the above equation, we get

[263(/\1 — )\3)()\2 — )\4)&);;3 + 64(2)\1 + A3 — 3)\4)()\3 — /\2)wi4

3.58
( ) 762(2)\1 -+ )\3 — 3)\2)()\3 — /\4)&)%2]&}24 = 0
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Similarly, acting with e; and es on (3.11), successively and using (3.6), (3.45),
(3.28), (3.40) and (3.57), subsequently we obtain
(359) [63()\4 — )\2)&1%3 + 64()\2 - )\3)&)414 + 62()\3 - )\4)&)%2]&)24 =0.

Equations (3.58) and (3.59) show that either w},, or the expression between
square brackets, has to vanish. We now prove that w3,, has to be zero. In fact, if
w3, # 0, then the expressions between square brackets has to be zero:

263()\1 — )\3)()\2 — )\4)&1%3 + 64(2/\1 + )\3 — 3)\4)()\3 — )\2)&);{4

(3.60) —€2(2M1 + Az — 3X2) (A3 — Ag)wdy = 0.

(3.61) e3(Ag — Ao)wids + ea(Aa — A3)wiy + e2(A3 — Ag)widy = 0.
Eliminating wi; from (3.60) and (3.61), we get
(3.62) (A3 — Xa) (A3 — \y)(eaway + €qwiy) = 0,
which shows that
(3.63) €2w3y + €4wiy = 0.
If (3.63) is true, then using it to eliminate wi,, from (3.60) and (3.61), we find

263()\1 — )\5)()\2 — )\4)(4)%3 + 64[(2)\1 + )\3 — 3)\4)()\3 — )\2)

(3.64) +(2A1 + A3 — 3X2) (A3 — \g)]wiy = 0.

(3.65) e3(Ag — A2)wis 4+ ea( Mg + Ay — 2X\3)wi, = 0.
From (3.64) and (3.65), we obtain
(3.66) (A3 = A2)(A3 — A1) =0,

which is a contradiction of the fact that principal curvatures are distinct. Therefore,
w3, = 0, which gives w3, = 0 in view of (3.57). Consequently, e3(A\2) = e3(A\4) = 0.

Now, we claim e4(A2) = e4(A3) = 0. To prove this acting e4 on both sides of
(3.42), (3.11) and using (3.6), we find

(3.67) (Mg — A3)?wizez + (Mg — A2)2wigen = 0.
Differentiating (3.67) along e; and using (3.6), (3.22) and (3.24), we get

[—264(/\1 — )\4)()\4 — /\3)00&4 + 63(2)\1 + /\4 — 3/\3)()\4 - /\3)(«}%3](,05)4)363 + [—264(/\1 —
)\4)()\4 — AQ)W;LL + 62(2)\1 + )\4 — 3A2)(>\4 — )\2)(.«.)%2](03262 =0
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and using (3.67) in the above equation, we get

[264()\1 — )\4)()\2 — )\3)(.(&4 + 63(2)\1 + )\4 — 3)\3)()\4 — )\2)&)%3

3.68
(3.68) —€a (21 + s — 3X2) (A4 — A3)wiplwiy = 0.

Similarly, acting with e; and e4 on (3.11), successively and using (3.6), (3.45),
(3.31), (3.34) and (3.67), subsequently we obtain

(369) [64()\3 — )\2)&)&4 + 63()\2 - )\4)60%3 + 62()\4 - )\3)(4)%2](.0:%3 =0.

Equations (3.68) and (3.69) show that either w3;, or the expression between
square brackets, has to vanish. We now prove that w3;, has to be zero. In fact, if
wis # 0 then the expressions between square brackets has to be zero:

264(/\1 — )\4)(/\2 — )\3)Wi4 + 63(2)\1 + Ay — 3)\3)()\4 - /\2)&13{3

(370) 762(2A1 + )\4 - 3)\2)(A4 - )\3)(")%2 = O

(3.71) ea(As — A2)wiy + €3(A2 — Ag)wgz + €2(Ag — Ag)wzy = 0.
Eliminating w}, from (3.70) and (3.71), we get
(3.72) (A1 — X2) (A — \3)(e2way + €3w33) = 0,
which shows that
(3.73) €2w3s + €3wis = 0.
If (3.73) is true, then using it to eliminate wi,, from (3.70) and (3.71), we find

264(/\1 — )\4)()\2 — /\3)&1&4 + 63[(2)\1 + A4 — 3)\3)()\4 — /\2)

(3.74) +(221 + A1 — 3X2) (Mg — A3)wis = 0.

(3.75) e2( A3 — Ao)wiy + e3( A2 + A3 — 204)wis = 0.
From (3.74) and (3.75), we obtain
(3.76) (A1 — A2)(A1 — A3) =0,

which is a contradiction of the fact that principal curvatures are distinct. Therefore,
w3y = 0, which gives w3, = 0 in view of (3.67). Consequently, e4(\2) = e4(A3) = 0,
which completes the proof. O

Now, we have:

Lemma 3.3. Let M r = 0,1,2,3,4, be a biharmonic non-degenerate hypersur-
face of constant scalar curvature with four distinct principal curvatures in semi-
Buclidean space E2,s = 0,1,2,3,4,5, having the shape operator given by (3.1) with
respect to suitable orthonormal frame {e1,es, e3,eq}. Then, we have

(3.77) (A3 — Aa)eawas + (Mg — Ao)eswis + (A — A3)eqwiy =0
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or
(3.78) Wi, =0,

fori#j#k, and i, j k = 2, 8, 4.
Proof. Using Lemma 3.2 in (3.16) and (3.17), we get

_ 4 _ 4
Ve, €3 = wiseqeq, and Ve,es = wiyeqey,

respectively. Using it along with (2.5) and Lemma 3.1 to evaluate g(R(eq, e2)es, e4),
and g(R(e1,e3)es, e4), we obtain

4 14 _ 4 14 _
e1(wy3) — €2waowyy =0, and  e1(wsy) — €3wszwszy =0,

respectively.
Putting j =4,k =2, =3 1in (3.7), we get

(3.79) (A3 — Aa)wis = (Ao — Ag)wio-
Differentiating (3.79) with respect to e; and simplifying, we get
(3.80) W§2(€2w52 - 64‘*&4) = w§3(63w§3 - €4Wi4)~

Now, (3.79) and (3.80) are homogeneous system of equations in two variables
w3, and wj; having either non trivial solution or trivial solution. If it has trivial
solution only, then, we have w3, = 0 and w3y = 0.

If it has non-trivial solution also, then the determinant formed by coefficients

of wj, and w3, in (3.79) and (3.80) will be zero, i.e.,
()\3 — A4)€2w%2 + ()\4 - )\2)63&%3 + ()\2 - )\3)64&1;{4 =0.
Similarly, we can prove that either w3, = w3, = wi; = w3, = 0 or the determi-

nant formed by their coefficients is zero. This completes the proof of the Lemma.O

Then we have the following two cases:

Case A: Let (3.78) holds, then using Lemma 3.2 in (3.27), (3.30) and (3.33),
we find

(381) 761(.0%2(.0%3 = 6263A2)\3,
(382) —61(‘0%2&)4{4 = €2€4A2)\4,
and

(383) 761(.«.)%3(4)414 = 6364A3)\4,
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respectively.
Using (3.11), (3.18)~(3.20) and (3.42), we get

Beres (H) — (5105 + 51250 + 5003

e )\ e (A e )\
ey (H){202) 4 80 | b jé}——elH(24H2 ).

(3.84)

From (3.43) and (3.84), we find

(A e7(A3) e>\ eq (A eq (A
e{5l §f+1(3 + HA0Y g6y () {2l 4 5100

+a M5} = et H[24H?(1 + 2¢) + p(1 + 3¢)].

(3.85)

Using (3.81)~(3.83) in (3.85), we obtain

e1 (A e1 (A e1 (A
erer (H){$22 4 210G 4 il — 36 — 18¢)

(3.86) pH(1+8€) 1 Bhadads
2804

Using (3.43) and (3.86), we have

pH(l + 128) 3A2A3\4
4 + 4 ’

On the other hand, using (3.6) and (3.81)~(3.83), we have

(3.87) ererer(H) = H3(6 — 2¢) —

e1(AaAsha) = Aadshg (202 4 209 4 )

e1 (A e1(A3 A4)
—b6ee H( &iz)(/\g( ,\?)(,\f Al)

(3.88)

Using (3.18)~(3.20) and (3.81)~(3.83), we find

e1(A2) e1(A3) er(A4)
A=A A3 — M A=A\

Also, from (3.81)~(3.83), we obtain

e1(A2) e1(A3) er(Aa)
)\2—)\1)\3—>\1>\4_)\1

Differentiating (3.90) along e;, and using (3.88)~(3.89), we get

e1(A2) n e1(A3) n e1(Ag) .
)\2—)\1 )\3—)\1 )\4_>\1

Acting with e; on both sides of (3.86) and using (3.18)~(3.20), (3.86), (3.87)
and (3.91), we find

(389) 12€H/\2)\3)\4 = 61(

(3.90) (A2AsA)? = —ei(

(3.91) €1 (/\2)\3)\4) = 2)\2)\3)\4(

5+8¢ e )\ e /\ e (A
ex(H){(6 — 5de) H? — CHE) gy — faala) | el | alu)y

3.92
( ) {H3(12 206) pH(2+205) }

Differentiating again (3.92) along e; and using (3.18)~(3.20), (3.81)~(3.83),
(3.42) and (3.87), we obtain
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e {H3(6 —2¢) — L1294 3hodadayp(6—54e) H2 — BE8D) )y 4 902 (H) (6 — 54e) H =
e1(p — 24H?){H3(12 — 20¢) — L2209y 4 fei0a) 4 eiCa) 4 el r3p2(19
20e) — @}el(H),

which on using (3.86), gives

er{H3(6 — 2¢) — LALHE) 4 3ha2uds b {(6 — 5de) H2
(5489 4 4 9e2(H)(6 — 5Ae)H = e (p — 24H2){ H3(12 — 20¢)
—eHEE09y | [3H2(12 — 20¢) — 222003

{H3(6 — 18¢) — £HU0E8) | 3Adaday

(3.93)

From (3.86) and (3.87), we have

ere2 (H){(6 — bde) H? — B15) 3

(3.94) (H?(12 — 20¢) — HEE20 1 a6 _ 180y — PHU482) | 3hadaiy

Then we have following cases:
(i) For spacelike normal vector &: In this case e = 1. Then eliminating e?(H) using
(3.93) and (3.94), we get

{8(p — 24H?)(16H3 + 11pH) + 2(48H? + 11p)(48H?
—9pH + 3X2A3\4) }(192H? + 13p) = (16H? — 13pH

(3.95) +3X2A3A\4)(192H? + 13p)? + 7T88H (48H?3 + 9pH
—3/\2/\3/\4)(16H3 + llpH),

or

(3.96) oAz Ay (—18432H* + 26784pH? + 351p%) = 884736 H"

+37136p2H3 + 1521p° H — 370176pH?.

On the other hand, differentiating (3.94) along e; and using (3.91) and (3.87),

we obtain

{8(p+ 12H?)(16H> + 11pH) + (192H? + 13p)(—32H3 — 22pH
+6A2A304) + 2(48H?2 + 11p)(—48H3 — 9pH + 3X2A3\4)}
(192H? + 13p) = 2(16 H3 — 13pH + 3AaA3A4)(192H? + 13p)?
—T68H (48H3 + 9pH — 3X2A3M\4)(16H? + 11pH),

(3.97)

which on solving, gives

(3.98) Ao As A1 (9216 H* — 4464pH? + 429p%) = 1179648 HT
: —81408pH?® — 27248p?> H® 4+ 377p° H.
Now, eliminating A3 A3A4 from equations (3.96) and (3.98), we get

F(H, p) = 2H(—260091p° — 4304040H2p* — 227385216 H*p3 — 1819201536 Hp? +
20228603900 H8p — 14948499460 H0) = 0.
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Now, f(H,p) is a polynomial in H with constant coefficients and as a real func-
tion satisfying a polynomial equation with constant coefficients must be constant,
we get that H is constant.
medskip

(ii) As above, for timelike normal vector £, we get the same result that H must
be constant.

Case B: Let (3.77) hold. Then, from (3.5) and (3.7), we find
(3.99) (A2 = A3)wip = (A1 — A3)wiy = (A2 — Aa)wis.
Using (3.99) and (3.5), we get
(3.100) wihwd, + wihwss +wiswi, = 0.

Adding (3.27), (3.30), (3.33) and using (3.11), (3.42), (3.100) and Lemma 3.2,
we get

(3.101) —€2€3WaoWas — €2€4WaaWh, — €4€3W1,was = €1(12H? + g)
Using (3.5), (3.7) and (3.100), we obtain
(3.102) Aowiaw?, + A3wiws, + Mwiowys = 0.

Multiplying (3.27), (3.30), (3.33) by Aseaes, Azeaeq, and Aaeqes respectively, and
adding these equations and using (3.102), we find

(3103) 6263)\40.1%20.}?1,3 + 6264)\3w%2wi4 + 6463)\2wi4w§3 = —3€1 A2 A3 4.
Using (3.100), (3.77), (3.7) and (3.5), we get
(3.104) €2WaWisway + E3W3aWiaWS, + €4 Waawas = 0.

Multiplying (3.27), (3.30), (3.33) by exezeawiy, €2€s€swis, and eaeze4wiy Tespec-
tively, and adding these equations and using (3.104), we get

(3.105) €4XaA3wiy + €30 o\ qwis + 2 X g d3why = —3€wiawiawi,.
Differentiating (3.11) along e; and using (3.6), we have
(3.106)  €e2Moway + €3X3was + €4 qwyy = Geey (H) — 2¢H (eaway + €3wis + €4wiy)-

Again, differentiating (3.42) along e; and eliminating e; (H) using (3.106) and
(3.6), we obtain

(3.107) /\gw%Qeg + /\g,w§363 + )\ﬁwi464 = 4H2(62w52 + 63w§3 + e4wi4).
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Also, from (3.11) and (3.42), we find

(3.108) Ao = 12H% + g ~\a(6eH — \y),
(3.109) Aohs = 12H% + g “N\g(6eH — \3),
(3.110) Ashg = 12H2 + g — X (6eH — \y).

Now, multiplying (3.108), (3.109) and (3.110) by eswi,, e3wi; and exwi,y, Te-
spectively and adding these equations and using (3.106) and (3.107), we get

1 1 1 1 1
64/\2)\3(,044 + 63)\2)\4(4)33 + 62)\4)\3(4)22 = (62(4)22 + €3w33

(3.111) +eawly)(28H? + 2) — 36He1 (H).

Equating (3.105) and (3.111), we get

(3.112) —3€1waowiswiy = (€away + €3was + eqwyy) (28H? + g) —36Heq (H).
Using (3.6), (3.106) and (3.111), we find

(3.113) e1(MaA3y) = (e2wig + €3was 4+ €awiy) (Nads Ay +56H3e + pH) — 36 Hey (H).

Eliminating e e (H) form (3.43) and (3.84), and using (3.6), (3.101) and (3.103),
we get

(3.114) —derer (H)(eawns + €3wis +€awiy) = 3Aadg Ay — 24H? (14 Te) + pH (1 — 2¢).
Using (3.43) and (3.114), we obtain

(3.115) —dererer (H) = 3hadshg — 8H3(1 4+ 9¢) — pH(1 — ¢).
Now, using (3.11), (3.18)~(3.20) and (3.101), we find

61(62(4]%2 + €3w§3 + €4wi4) = —12H261

3.116
(3:116) +(eawhy + €3wlhy + €awly)? + 261 (12H? + 8).

Differentiating (3.114) and using (3.113), (3.115) and (3.116), we obtain
(3.117)  (eawyg + €3wis + 4wy ) (—SH?(14 + 63€) 4+ pH(2 — 3€) + 3XaA3\4)
= e1(H)(—12H?(2 + 60¢) + p(5 — 2¢)).
Using (3.114) and (3.117), we get

—9()\2/\3/\4)2 + )\2/\3/\4{(408 + 2016€)H3 + (—9 + 156),0H}
(3.118) +(5446 — 1352)pH4 + (76 — 8)p2H2 — (309126 + 87360)H6
= dere2(H)(p(5 — 2€) — 12H?(60¢ + 2)).
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Differentiating (3.118) and using (3.113), (3.115) and (3.117), we obtain

()\2)\3)\4)2{(456 — 27)p + (3672 + 220326)[’[2} + )\2)\3)\4{(—1800576
—4076352¢)H® + (—23040 + 4896€)pH® + (—12 — 54¢)p>H}

(3.119) +(225437184¢ + 144883200) H® + (1510656¢€ + 160960)pH® + (384
+8808)p2 H* + (—69¢ + 89)pP H? = —96¢,e2(H ) H (60e + 2)

(=8H3(14 4 63) + pH(2 — 3€) + 3A2A3)4).

Differentiating (3.112) and using (3.11), (3.114) (3.18)~(3.20), we get

36e1e3(H) = —6H A3 \a(7 — eeaezey) + 24H*(34 + 134e)

3.120
(3.120) +pH2(20 + 37€) + &

Using (3.120) to eliminate e?(H) from (3.118) and (3.119), we obtain

(3.121) ()\2)\3)\4)2CL1 4+ XAz by = ¢,
and
(3122) ()\2)\3)\4)2(12 + )\2A3)\4b2 = C2,

respectively, where

ap = —162,
by = 6H[(888 — 4032¢ + eae3e4(4320 + 144e)) H? + (43 + 17¢ + eaezes (12 — 30¢))p),
c1 = —(772992¢ + 3097728) H® — (11472¢ + 34608)pH*
— (556¢ — 172)p*H? — p3(2¢ — 5),
as = 9[(15¢ — 9)p + (1000 4 624¢ + exe3¢4(2880 + 96¢)) H?],
by = 6H[(158406 — 1383840¢ + ezezeq(—185472 — 731136¢)) H* + (7376
+ 1160¢€ + ee3€4(2736 — 4224¢)) pH? + (—2 + 93¢) p?],
co = —H?[(—157914624€ + 38270672) H® + (—9505792¢ — 4894784)pH*
+ (—63616¢ — 89848)p? H? + (249¢ — 437)p?].

Now, eliminating (A2A3\4)? and AgAsA4 from (3.121) and (3.122), we obtain
(a1ca — ager)? — (e1ba — caby)(arby — aghy) =0,

which is a polynomial equation in H of degree 16 with constant coefficients. Now
a real function satisfying a polynomial equation with constant coefficients must be
constant and therefore H is constant, which is a contradiction.

(b) The case of three distinct principal curvatures
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Suppose that M is a biharmonic hypersurfaces with three distinct principal
curvatures and constant scalar curvature with diagonal shape operator. We also as-
sume that mean curvature is not constant and gradH # 0. Assuming non constant
mean curvature implies the existence of an open connected subset U of M?, with
grad,H # 0 for all p € U. From (2.9), it is easy to see that gradH is an eigen-
vector of the shape operator A with the corresponding principal curvature —2eH.
Without losing generality, we choose e; in the direction of gradH and therefore
shape operator A of the hypersurface will take the following form with respect to a
suitable frame {e;, eq,e3,¢e4}

—2eH
A
(3.123) Ap = :
A4
From (3.11), (3.42) and (3.123), we get
(3.124) 2X\ + Ay = 6eH.
(3.125) 207 4\ = 12H? — p.

We have the following cases:

(i) For spacelike normal vector ¢: In this case e = 1. From (3.124) and (3.125),
we find

(3.126) e1(\) = e1(\) = 2ey (H).
and
(3.127) 64()\) = 64(/\4) =0.

Now, equations (3.18), (3.20) and (3.33) reduce to

61()\) 61()\)

(3.128) el(A+2H)—()\+2H)2:—2elH/\,

(3.129) el(eléf,{H:QiA)) - (eléZH:QiA) )2 = —2e, H(6H — 2)\),
and,

(3.130) () a6 =20, 6l o),

A+2H 8H — 2\
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Using (3.126) in (3.128), (3.129) and (3.130), we find

62
(3.131) erer(H) — (i Jlr(f};) = —etHA(\ +2H),
(3.132) erer(H) — (;If%) = —e1H(6H — 2)\)(8H — 2)),
and,
(3.133) 4e3(H) = —es A\ + 2H)(6H — 2)\)(8H — 2)).

From (3.131) and (3.132), we get
(3.134) 3e2(H) = —et HOA + 2H) (A — SH)(\ — 4H).
Eliminating €3 (H) from (3.133) and (3.134), we obtain
(3.135) 3\ —8AH — 8H? = 0.
On solving (3.135), we get A = (‘&QT‘E)H, which gives e (\) = (M)el(f[),
thus contradicting (3.126).
(ii) Proceeding as above, for timelike normal vector £, we get a contradiction.

(¢) The case of two distinct principal curvatures

Suppose that M is a nonminimal biharmonic hypersurface with two distinct
principal curvatures and constant scalar curvature with shape operator diagonal.
From (2.9), it is easy to see that gradH is an eigenvector of the shape operator A
with the corresponding principal curvature —2¢H. Without losing generality, we
choose e in the direction of grad H and therefore shape operator A of hypersurfaces
will take the following form with respect to a suitable frame {e1, e, e3,e4}

—2eH
A
(3.136) Ay = \
A
From (3.11) and (3.136), we get
(3.137) A= 2eH.
Also, from (3.6) and (3.137), we obtain
H
(3.138) €Wy = €3W53 = €4W1y = e1(H)

2H
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Also, from (2.5), R(es1, ea,e1,e2) shows that

(3.139) e1(wag)er = (way)? — e14H?.

Using (3.138) and (3.139), we find

_ 3ei(H)

(3.140) arerer(H) = =22 —8H3.

(3.141) 616181(H) =

2H

On the other hand, from (2.8), (2.10), (3.136), and (3.138), we have

_ 3ei(H)

I L 16HS.
Y

From (3.140) and (3.141), we get that H must be zero, which is a contradiction.

Combining (a), (b) and (c), we have:

Theorem 3.4. Every biharmonic non-degenerate hypersurfaces M*, r = 0,1,2,3, 4,
of constant scalar curvature with diagonal shape operator in semi-Euclidean space

E5

s

s=0,1,2,3,4,5 has zero mean curvature.

Acknowledgement. The authors are thankful to the referee for helpful sugges-
tions to improve the original version of the article.
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