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ABSTRACT. We study the Gauss and Poisson semigroups connected with the Riemann-
Liouville operator defined on the half plane. Next, we establish a principle of maximum
for the singular partial differential operator
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(r,z,t) € 10, +00[xRx]0, +00].

Later, we define the Littlewood-Paley g-function and using the principle of maximum, we
prove that for every p € |1,4o00[, there exists a positive constant C}, such that for every
f S Lp (dl/a)7

1
o e < Ng(Hllpva < Cp llfllprva-
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1. Introduction

The usual Littlewood-Paley g-function is defined in the Euclidean space [27] by

“+o0 1
WGR%gux@:(/ \VP%@Win
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where (P!);~0 is the usual Poisson semigroup defined by
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and V is the gradient given by

) o 0
V= (871’ o G 5).

It is well known (see for example [27]) that the mapping

fr—9(f)

is bounded from the Lebesgue space LP(R",dx), p € ]1,4o00[ into itself. Moreover,
the Littlewood-Paley theory plays an important role in the study of many function
spaces as the Hardy space HP. Many aspects of the Littlewood-Paley g-function
connected with several hypergroups are studied [1, 2, 6, 25, 29]. The authors have
been especially interested by the boundedness of such operator when acting on the
Lebesgue space LP; p € ]1,400].

In [7], the authors have defined the Riemann-Liouville operator Z,; « > 0, by

//f 1—t2m+rt)(1—t)("’*

(1.1) Zo(f)(r,x) = x(1—s?)*"Ldtds, if a >0,

1 dt
7/ forvV1—t2 x4+ rt)—— if a = 0;
—1

™ 1—1t2

where f is any continuous function on R2, even with respect to the first variable.
The dual %, is defined by

et [ s
glu,z +v
20 F a =+ 1 uz,Tz
(1.2) "Za(g)(r,z) =
& ’ ( 2 —r2)~Ly du do,

uw?—v?—r if a >0,

—y)?,y)dy, if o = 0;
ﬁ/ 7,9)

where ¢ is any continuous function on R?, even with respect to the first variable
and with compact support.
In particular, for & = 0 and by a change of variables, we get

1 21

<%>0(f)(7n7x) = 5

5 f(rcosf,z + rsind)df.

This means that %Zy(f)(r, z) is the mean value of f on the circle centered at (0, z)
and with radius r.

The mean operator %, and its dual *%, play an important role and have many
applications, for example, in image processing of the so-called synthetic aperture
radar (SAR) data [17, 18] or in the linearized inverse scattering problem in acoustics
[15].
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The operators %, and its dual *%,, have the same properties as the Radon transform
[16], for this reason, %, is called sometimes the generalized Radon transform.
The Fourier transform .%,, associated with the operator %, is defined by

LAV € T, Zal)(m ) = /ooo / F(r @) (cos(a)e= ™) (1, 2)dvia (1, )
/0 h /R F(ra2) o (/A2 T N2 N du (1, ),

where
. T is the set given by

(1.4) T = RPU{(ip,N); (1,A) € R |ul <A}
. dvg(r, ) is the measure defined on [0, +0o[xR by

r2etlgy . dz
QQF(OZ + 1) \/271'-

« jo is the modified Bessel function that will be defined in the second section.

(1.5) dve, (1, x)

Many harmonic analysis results have been established for the Fourier transform
Fo [5, 7,9, 10, 11, 24]. Also, many uncertainty principles related to the Fourier
transform %, have been proved [3, 4, 8, 20, 22, 23].

In [2], we have defined the Gauss and Poisson semigroups associated with the
Riemann-Liouville operator %,. These semigroups are denoted by (¥4?);~o and
(P)¢>0. The Poisson semigroup (£!);~q allows us to define the Littlewood-Paley
g-function connected with %, by

o) = ([ @) | )
where

(1.6) U()ra,t) = Pf(r ),

o 0 0
V=3 20 21)

Then, using the maximal functions associated with these semigroups and their
mutual connection, we have established in [2] the following main result

and

For every p € ]1,2]; the mapping f —— g(f) can be extended to the space
LP?(dvy) and for every f € LP(dv,), we have

2—p

272 D

S

Hf||p7’/a'
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Where
« LP(dvy); p € [1,+00], is the Lebesgue space formed by the measurable functions
f on [0, +00[xR such that || f||y., < +oo, with

+oo 1
/ /|f7'1|d1/a7"$)p, if pe [1,+o0],

ess sup | f(r,z)|, if p = 400,
(r,z)€ [0,+00[xR

(1.8) M fllpra =

and dv, is given by the relation (1.5).
Our purpose in this work consists to extend the inequality (1.7) for every p €
J1, +ool.
In this context, we consider the singular partial differential operator
0% 2a+1 0 02 02
Ay=—4+"7"" 4+ 4+
T Ty oo o

Building on the Hopf principle of maximum, we have established the following
principle of maximum for the operator A,:

Let ag,a1,T be positive real numbers and Q@ =] — ag, ap[x] — a1,a1[x]0,T[. Let
ue C?*(Q)NC°Q) such that

i. Y(r,z,t) € Q; u(r,z,t) =u(—r,xz,t).
it. V(r,xz,t) € Q, Aqu(r,z,t) > 0.

Then, if u attains its mazimum in €2, u is constant on Q.
Using the precedent principle of maximum, we have proved the following interesting

result
Let u € C%*(R%*x]0,+oo[) N CO(R? x [0, +oc[) such that

i. Y(r,z,t) € R? x [0, +oof; u(r,z,t) = u(—r,z,t).
i. V(r,z) € R% u(r,z,0) > 0.
. lim u(r,z,t) = 0.
r24+x24+t2——+o00
vi. V(r,x,t) € R? x [0, +00[; Ayu(r,z,t) <O0.

Then u is nonnegative.

This theorem allows us to establish the well known inequality satisfied by the Poisson
semigroup, that is

For every positive real number t and for every f € 2.(R?), we have

V(% ()02 20" < 2 (V@ (D), 0)F) ),
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where % (f) is given by the relation (1.6) and Z.(R?) is the space of infinitely
differentiable functions on R?, even with respect to the first variable and with
compact support.

Combining the previous results together with the Riesz-Thorin theorem and our
paper [2], we have establish the main result of this paper

For every p € |1,400[, the mapping: f —— g(f) can be extended to the space
L?(dvy) and for every f € LP(dv,), we have

(1.9) ||9(f)||p,l/a < Bp||f||p,va

Finally, using the Plancherel theorem for the Fourier transform associated with the
Riemann-Liouville operator, we have proved the ”converse” inequality of (1.9), that
1;’07" every p € |1, +o00[ and every f € LP(dv,), we have

(1.10) WAllpve < 4 Bz [lg(f)llpva-

The inequalities (1.9) and (1.10) show that

For every p € ]1,+00[, there exists a positive constant C), such that for every f €
LP(dv,,),

1
o Mllpwa <llg(Hllpve < Cp [If]
P

PiVa

2. The Riemann-Liouville Transform

In this section, we recall some harmonic analysis results related to the convo-
lution product and the Fourier transform associated with the Riemann-Liouville
operator. For more details see [5, 7, 9, 10, 11, 24].

Let D and = be the singular partial differential operators defined by

9.
ox’
»# 2419 o

or? r or 012

For all (1, A) € C2, the system

[1]

(r,x) € ]0,+00[xR, a > 0.

Du(r,z) = —idu(r, z);
Eu(rv 1.) = _lu‘2u(rv $)7
u(0,0) =1 @(0 z)=0; Ve R
) - b a’r ) - ) )

admits a unique solution ¢, » given by

(2.1) V(r,z) € [0,4+00[xR, @ua(r,z) = ja(r\/;ﬂ +)\2) e~
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where j, is the modified Bessel function defined by

e Ja(2) _ S G VA
Ja(2) =2°T (a4 1) g —I‘(a—i—l)kz:om(§) ,

and J,, is the Bessel function of first kind and index « [13, 14, 21, 30] . The modified
Bessel function j, has the integral representation

Ia+1)

Jalz) = ﬁf(a-i—%) /11

Consequently, for every k € N and z € C, we have

(2.2) (1 — %)% exp(—izt)dt.

(2.3) B )| < eltmel,

Proposition 2.1. The eigenfunction ¢, » satisfies the following properties
i. The function @, x is bounded on R? if, and only if (u,\) € Y, where Y is the
set given by the relation (1.4) and in this case,

(2.4) sup |pua(ra)| = 1.
(r,z)e R?

1. The function @, x has the following Mehler integral representation

% /11 /11 cos (prsy/1—2) exp (— iX(z +1t))

X (1 —12)2"2(1 — 2)* Ydtds; if a >0,
(2.5) pua(r,z) = 1 /1
7r

-1

cos (rpy/1 —t2) exp (— iX(z + rt))

Remark 2.2. The Mehler integral representation (2.5) of the eigenfunction ¢,, x
allows us to define the integral transform %, by

j/_ll/_llf(rsm,x+rt)(l _2)e-t

x(1—s?)2"tdtds, if a >0,

1t dt
— rv1—t2,z+rt , if a=0;
W‘/_lf( )‘/1*t2

where f is any continuous function on R2; even with respect to the first variable.
Then, the relations (2.5) and (2.6) show that

(2.7) ou, A(rx) = %a(cos(p)e*i)")(r,a:),

(2.6) Za(f)(r,x)
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which gives the mutual connection between the functions ¢, » and cos(u-)e™".
For this reason, the operator %, is called the Riemann-Liouville transform associ-
ated with the operators D and Z.

The partial differential operators D and = satisfy the intertwining properties
with the Riemann-Liouville operator and its dual

2
BE() = o Rall) FDU) = D R,
82
ZHf) = Faag(F) DRS) = ZuD()),

where f is a sufficiently smooth function.

To define the translation operator associated with the Riemann-Liouville transform,
we use the product formula for the eigenfunction ¢, x, that is for (r,z) and

(5,9) € [0,+00[xR,

MNa+1) /7T 5 .y
) ) = = 1\ + 2 + 2 0, + @ 0deo.
Cu(T2)ouA(8,9) Vil (o + %) ; SD;L,A(\/T s rscost,x y) sin
Definition 2.3. i) For every (r,z) € [0, 4+00[xR, the translation operator 7(, , as-
sociated with the Riemann-Liouville transform is defined on LP(dv,); p € [1,+o0],
by

T(r,x) f(sa y)

(2.8) = \/m /OTr f(\/r2 + 52+ 2rscosf,x + y) sin®*(0)d6.

ii) The convolution product of f,g € Ll(dv,) is defined for every (r,z) €
[0, +00[xR, by

+oo
(2.9) frglrz) = / / vy (F)(5,9)9(5 1) dv(5. ),

where f(say) = f(sa 7y)'

The set [0, +0o[xR equipped with the convolution product * is an hypergroup
in the sense of [12].
We denote by 0076(1[%2) the space of continuous function on R?, even with respect
to the first variable such that

lim  f(r,z) =0.

r24+x2—+o00

The space Cy .(R?) is equipped with the norm

Hf”oo,va = sSup \f(?",x)|

(r,z)€ [0,+00[xR
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Proposition 2.4. i. For every f € LP(dv,); 1 < p < +oo, and for every
(r,x) € [0,400[xR, the function (. 4)(f) belongs to LP(dv.) and we have

PV

DVa -

ii. For every f € L'(dv,) and (r,z) € [0,+0o[xR,

(2.11) / / Tir,2) (F) (8, y)dva (s, y) / /fsydz/asy)

iii. For every f € LP(dv,); p € [1,+00], we have

(2.12) lim HT fH 0.

(r,z)—(0,0) PV

w. For every f € Co.c(R?) and every (r,xz) € R?, the function 7(. ,)(f) belongs to
Co..(R?) and

(2.13) ol Moo () = Fll,, = 0

v. Let ¢ be a nonnegative measurable function on R x R, even with respect to the

first variable, such that
“+o0
/ / o(r,z)dvg(ryz) = 1.
0 R

Then the family (©(a.p)) (ab)e (R?)2 defined by

1 r T

V(r,z) € R xR, ‘p(a,b)(rv r) = M@(a, Z)

is an approzimation of the identity in LP(dvs); p € [1,+o00[, that is for every
f € LP(dv,), we have

2.14 lim 0
( ) (a,b)—(0+,0+) Hf*SD(ab) fllp,va

vi. For every f € Cp(R?),

2.15 lim — fllowa = 0.
(2.15) % 2~ flloes

vit. If 1 < p,q,r < +oo are such that % = % + % —1 andif f € LP(dv,),
g € Li(dvy), then the function f * g belongs to L"(dv,,), and we have the Young’s
inequality

(2.16)

< S llpwa
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In the following, we need the notations
. T is the subset of T given by

T =Ry xRU{(it,2); (t,z) € R* 0<t < |af}.

« By, is the o-algebra defined on T by

n
By, ={67"(B), B€ Bor([0,+oc[xR)},
where 0 is the bijective function defined on the set T by

(2.17) 0(,A) = (V2 +A2 ),

and Zor ([0, +00[xR) is the usual Borel o-algebra on [0, +00[xR.
+ d7q is the measure defined on %y, by

VAE Br,, va(A) = va(0(A)).

Proposition 2.5. i. For all nonnegative measurable function g on Y, we have

[ ity = g ([ [ a0 02t

+ /R /0 Mlg(iuw\)(V—u2)audud/\)-

ii. For all nonnegative measurable function f on [0, +00[xR (respectively integrable
on [0, +0o[xR with respect to the measure dv,, ), f o0 is a nonnegative measurable
function on Y4 (respectively integrable on Y, with respect to the measure dvy, )
and we have

e [ [ e i) = /0%0 | s,

Now, using the eigenfunction ¢, » given by the relation (2.1), we can define the
Fourier transform.

Definition 2.6. The Fourier transform associated with the Riemann-Liouville
operator is defined on L!(dv,) by

+oo
VN € T, Falf)A) = / / £ )0 () dv(r, 7).
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Proposition 2.7. i. For every f € L'(dvy), the function Fo(f) belongs to the
space L>®(dv,) and we have

(2.19) || Za ()] < Il

X0, Y

ii. Let f € L'(dvy). For every (r,z) € [0,+00[xR, we have

V(Ma )‘) €T, Fa (T(r,x)(f)) (/’L’ )‘) - ()OM,)\(T’ x)ya(f)(/’“ )‘)
iii. For f,g € L'(dvy), we have
(2'20) V(/,L, )‘) € T, ya(f * g)(“a)‘) = ya(f)(/"a)‘)ya(g)(:ua/\)'

vi. For f € L'(dv,), we have

(2.21) Y(u, A\ € T, FalH)(A) = Zalf) 0 8(u,N),

where for every (u, \) € R?,

— +oo
22 ZNEN = [ [ e esp(-ia)dva (ra),
0 R
and 0 is the function defined by the relation (2.17).

We denote by .7,(R?) the space of infinitely differentiable functions on R?, rapidly
decreasing together with all their derivatives, even with respect to the first variable.
The space .7, (R?) is endowed with the topology generated by the family of norms

(2.23) pmlyp) = (14 7% +22)"[D? () (r,2) .

sup
(r,x)€ [0,400[xR
k+[8l<m

Theorem 2.8. i. Let f € L'(dv,) such that the function Fo(f) belongs to the
space L'(dv.), then we have the following inversion formula for F,, for almost
every (r,x) € [0,4+00[xR,

f(rz) = / N IR LAY

(2.24)

[ [ et datrm) e dvatu
0 R

ii. ([19]) The transform F o is a topological isomorphism. from Z.(R?) onto itself
and we have

Fo(f) () = / h / A o) € dve (s, V).



LP-Boundedness for the Littlewood-Paley g-Function 195

iii. (Plancherel theorem) The Fourier transform %, can be extended to an isometric
isomorphism from L?(dvy) onto L?(dvs) and for every f € L?(dv,),

(2.25) 1 Za(Dllzne = [Ifllzva-

Using the relations (2.19), (2.25) and the Riesz-Thorin theorem’s [26, 28] we deduce
that for every f € LP(dvs); p € [1,2], the function .Z,(f) lies in LP (dva); p/ =

Ll’ and we have
p—
(

26) | Zalh)ll, .. < 1]

DiVo

3. Gauss and Poisson Semigroups associated with the Riemann-Liouville
Operator

In our paper [2], we have defined and studied the Gauss and Poisson semigroups
connected with the operator Z,. In this section, we recall some properties of these
operators to simplify the reading of this paper. Also, we establish some new results
that we use in the next section.

Definition 3.1. i. The Gauss kernel g;, ¢t > 0, associated with the Riemann-
Liouville operator is defined on R? by

(r2+12)
2t 2 T+
(3.1) = Z e ) ().

ii. For every t > 0, the Poisson kernel p; associated with the Riemann-Liouville
operator is defined on R? by

wia) = [ [ eI GG s )
Ty
3
_ e _ 2ela+2) !
(3.2) = Za (6 )(7“755) = NG (r2 + 22 4 2)ot2’

Definition 3.2. The Gauss (respectively the Poisson) semigroup (4%);~¢ (respec-
tively (2")1~0) is defined by

(3.3) 9'(f)(r,z) = gi* f(r,o) (respectively Pf)(r,z) = ps * f(r, x))

Proposition 3.3. i. For every p € [1,+oc|; the operator 4 (respectively ")
it > 0, is a bounded positive operator from LP(dv,) into itself and for every f €
L?(dv,,), we have

||%t(f)|’p,ua < fllpe (respectively ||<@t(f)||p,ua < ||f||p,ya)




196 Lakhdar T. Rachdi, Besma Amri and Chirine Chettaoui

ii. For every p € [1,+00l, the family (4)i~o (respectively (P%)~0) is a strongly

continuous semigroup of operators on LP(dv,,), that is

. Fors,t >0; 9% 0@t =95t (respectively P o Pt = P51,

. For every f € LP(dv,), lim+ |9 (f) = fllpwa =0, (respectively lim+ |2 (f) —
t—0 t—0

prﬂ/a = 0)~

Lemma 3.4. i. We have the following connection between the Gauss and Poisson
semigroups, that is

P(f)(r, ) / —gw £)(r,x)du.
f
1. For every p € 11,400 and every f € Qe(RQ), the mazximal function f* defined
by
(3.4) fr(r,x) = sup|2'(f)(r )|

t>0

belongs to the space LP(dvs) and we have

(3.5) N lpwe < 2(p

SHI

Lemma 3.5. Let f € Z.(R?); supp(f) C B, = {(r,x) € R?% r*+2? <a’},a>0
and let

(36) %(f)(rv Zz, t) = Pt * f(’/‘, Jf)
= 2'(f)(rx).
i. For every (r,r) € R?; r? + 22 > 4a?,

92045 [ + 2)(2a + 5)a2+3 [ lloo.ve
Valla+3)2a+3) (2412 +a2)et?

2 @)t <

ii. For every (r,z,t) € R?x]0,+o0],

Da+3) T(a+5) 2278 ||f|hu.
‘a(%(f))(r,gmt)’ < NCASCESY el

and

2°*30(a+ 3) [If 1w
T t2a+4 :

(2 () a1 <

Proof. i) From the relations (2.8) and (3.2), we have

2003 (v +2) D(a+1)
™ Fla+1)

T(r,—x) (pt)<57 y) =

y /71' tsin (9)d9
R (t2 + (r2 4+ s2 4+ 2rscos(9)) + (z — ?J)Q)(HQ.
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Then,

0

atd a o
D ono) sy = TTer? Hor ]

I(a+ %)

T
/’* o) tsin?*(0) "
% &( 2 2 1 &2 2 a+2) ’
o (2 4 (r? + s2 4 2rscos(0)) + (z — y)?)
By a standard computation, we get

203 (20 + 5) (o +2) T(a+1)

T o+ %)

N

|2 (e () (5.9

/’f 2 10) do
o (t2 + (7«2 + 52 4+ 2rs COS(Q)) + (x - y)z)("+2
20+3 (204 5)[(a +2) T(a+ 1)

- Fla+1)

1 N < 2«

(tg + (7“ _ 8)2 =+ (SU _ y)g)a+2 /o sin“*(6)df
20+3 (20 + 5)I'(a + 2) 1
3.7 = :
( ) ﬁ (t2 + (T _ 8)2 + (33 — y)2)a+

N

Let f € 2.(R?); supp(f) C Ba, let B = {(r,x) € By;r> O}. From the relation
(2.9),

vty = [ [ roao)s0) fs s,

consequently,

e < [ [

and from the relation (3.7), it follows that

0
57 () (5,9)| | £(5,9)|dva(s, ),

20%5 (20 + 5)T(v + 2)
’f(@/(f))(nx,t)‘ < NG | flloo,va

ot
dve(s,y)
8 //B;r (2 +(r—s)?2+(x— y)2)a+2.

However, for 72 + 22 > 4a? and (s,y) € B}, we have

[|(r, )1,

[|(r,z) = (s,9)l| =

DN | =
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thus, for every (r,z) € R? r?+ 2% > 46 and t > 0,

P 20%3 (2a 4 5)(ar + 2) vo(B)
5 (D) rab| < NG [1£lloo e ==
m (2 + 1 (r2 + 2?))

_ 203 4242 (20 4 5)[ (o + 2) Vo (B)

B ﬁ (7”2 + ﬁL‘Q + t2)a+2’
and using the fact that

2a+3
va(BY) = e 7
(2a+3) 20+20(a + 2)
we obtain
22&+5F(a +2)(2a + 5)a2a+3 I f1loo,va

0
5 ] « A

ii) From the relations (2.20), (2.21), (2.24), (3.2), (3.6), we deduce that for every
f € LY(dv,) and every (r,z,t) € R?x]0,+oo[, we have

(3.8) % (f)(r,z,t) = /OO/V+ F )1 N) Jalri) € dvg(p, V).

So,

0

5 (7 (D) t) = /oo e‘tV”2“2%0‘)(#,A)u%(ja(w))emdva(u,A)~
0

R

Consequently, for every (r,z,t) € R?x]0,+oo];

1||f |1,Va /OO eft\/y‘2+)\2 ,u2a+2d,ud/\.
20t5 T T(a+1) Jo Jr

’%(%(f))(r,x,t)‘ <

)
By the change of variables u = g cos(f), A= % sin(6), we get

||f||17V(x 1 % a 007 «
[y (% (D). 0)] < 2271 /7 D(a + 1) P07 2/0 cos* +2(0)d0/0 e dp

Lla+3) Dla+3) 2°73 ||f]1va
JrD(a+1) {2041 -

iii) For every (r,z,t) € R?x]0,+oo[, we have

0

@m0 = [ [ VEEE () ) (1.,



LP-Boundedness for the Littlewood-Paley g-Function 199

Consequently, for every (r,z,t) € R%x]0, +o0[;

3] y 00
’*(%(f))(ﬁ%t)‘ < 1||f||1’ “ / /e‘tv““*z IA| 2o dpdA.
oz 20‘+5ﬁ F(Oz + l) 0 R
Again by the change of variables u = g cos(), A= g sin(6), we have
9 /11w 1
— (% ’ at ‘ < —
PRCCALER 20+ /7 T+ 1) P07
X 2/2 COSZQH(@)sin(@)dﬁ/ e=P p*et3 dp
0 0
_ 2@+ 3) 1l
- T 2a+4

Proposition 3.6. Let f € 2.(R?). The function
Wf)rat) = [ ()|
= (L@n)een) + (2@ @n)een)

+ (%(%(f))(r,x,t)f

satisfies the following properties

i. For every t > 0, the function v(f)(.,.,t) belongs to the space Co .(R?).

ii. For everyt > 0, the function (r,x) — (1 4+ 72+ 22)2 v(f)(r,z,t) belongs to the
space L' (dv,,).

5. For every t > 0, the function %(v(f)(., " t)) belongs to C*(R?). Moreover, the

functions £, (% (v(£)(. .,t))) and 9 (% (v(f)(. .,t))) are bounded on R2.

o
- I t)=0.
vi. , m u(f)(r )
Where ¢, is the Hankel operator defined by
”? 2a+1 0 1 0, gy 0
(3.9) b, = 724_7 — = 7( 2041 7)
o pooOp p o o

Proof. Let f € Z.(R?); supp(f) C Bg; a > 0.
i) The assertion follows from [2, Lemma 4.2] and Lemma 3.5 i).
ii) From the relation (3.8), we have

2t = [ [ VIR F 00N dalr) € v,
o Jr
wish implies that for every (r,z,t) € [0, +0o[xR x [0, +o0],

(310) o)z, 0] <l Za(DIF o, + 11X ZalDIR, + V2 + X2 ZalhIR -
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Again, from [2, Lemma 4.2] and Lemma 3.5 i), for every (r,z) € R? 72+ 22 >

4a?, we have

(1+ 7%+ 2%)?

(1472422 o(f)(r,2,0)| < Cra

Thus, from the relation (3.10), we get

/oo/(1+r2 +x2)2 |U(f)(r,z,t)|dl/a(r,:17)
0 R
://B+ (1+r2+x2)2 |U(f)(7’7$,t)|dl/a(7’,x)

+// (L4172 + 22 |o(f)(r, 2, t)|dva(r, 2)
(B3,)°
< (14022 [lln Fal P, +1IA ZalDIEs, + Vi + 2 F,

(1+ 7%+ 22)?
+Cla/ / r2+x2+t2)2a+4dya(r7x) < too.

iii) The result follows from ii).
vi) For every (r,z,t) € R%?x]0,+oo[; 2 + 22 > 4a?, we have

Cl,a

(3.11) [o(f)(ra,t)| < (r2 + 22 + {2)20+4’

and for every (r,z,t) € R?x]0, +o0],

(3.12) |v(f)(r,x,t)| < t4a;8'
The relations (3.11) and (3.12) involve that

lim v(f)(r,z,t) = 0.

r24+24+t2—+4o00

Lemme 3.7. Let f € Z.(R?) and v(f)(r,z,t) = ‘V(%(f))(r,x,t) 2,

every s > 0,

lim %(v(f)(.,.,s))(r,x,t)zo.

r24x24+t2—+o00

(7’2 + x2 + t2)2a+4 :

2(NIB,] va(BL)

then, for

Proof. Let f € Z.(R?). From the relation (3.8) and Proposition 3.6, it follows

that for every s > 0, and (r,z,t) € R?x]0, +o0],

(3.13) %(v(f)(.,.,s))(r,x,t)

= J5 Jp e VI Z ()0 9)) (1, 0) i) €37 dve (11, V).
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Thus, by Fubini’s theorem, we get
> U (v(f)(.,.,8))(r,z,t)

= [ &P o<)67t‘/m Fo (v s r2 jo(rp)dr, ﬂ
Le=(] Falbl) ) () 1 Gulrm)dral) -
where et

dra(p) = 2 T(a+1) dp.

Using the fact that
(3.14) (—la) (Gal(r)) (1) = 1% jalrn)
where ¢, is given by the relation (3.9), we obtain

> U (v(f)(.,.,8))(r,z,t)
o [T o 5 (it a
= [ [ Fa(0(F) (o 9)) 11 (=) (G (7)) (1) (12

= Ver
:‘/ReiAw</ooo(_€a) [e*t 242 %(v(f)(.,.,s))(u,)\)} ja(T/i)dTa(,U)> %
. By computation,
— (VI Z (o)) (V)
~{lz TM - (2;‘211;2} Fa(0(F) () (1 0)

Let
Mi(a,s) = max { || Za () (. 8)) e
1o (Za (03l 1P (o))l

then,

2 )| M) [ f [ 50 + ra +

2t 2 2
+ 1+ 7N]e*tv“ g (1, ),

VY
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and by the change of variables y = gcos(é), A= gsin(ﬁ), we deduce that there
exists C1(a, ) such that for every (r,z,t) € R?x]0,+o0],

14+t+t2
t2a+3

(3.15) ‘7"2%(v(f)(.,.,s))(r,a:,t)‘ < Ci(a,s)

As the same way, there exist co(a,s) and c3(a, s) such that for every (r,x,t) €
R?x]0, 400,

2
(3.16) 2 % () )| < Calons) T
2
(317) % ()t < Cslas) T

Combining the relations (3.15), (3.16) and (3.17), we deduce that there exits a
positive constant C(c, s) such that for every (r,z,t) € R%x]0, +o0],

1 2 1
(318) |7 ran] < Clays) =t ]

From Proposition 3.6, for every s > 0, the function v(f)(.,.,s) belongs to Cp .(R?).
Since the family (p;);~0 is an approximation of the identity in Cp .(R?) (2.15), we
deduce that

lim %(v(f)(., .,s))(., Gt = 0(f)(.,. 8) in Coo(R).

t—0+
Consequently,
(3.19) lim %(v(f)(.,.,s))(r,x,t) _—
7‘2+$24;+OO
t—0

On the other hand, from the relation (3.18), we deduce that for every a > 0,

(3.20) . lim %(v(f)(.,.,s))(r,x,t) _—
r 4tz :r>ta—>+oo

The relations (3.19) and (3.20) show that for every s > 0,

lim ?/(v(f)(, .,s))(r,x,t) = 0.

r24x24t2—+o00

Lemma 3.8. Let f be a bounded continuous function on R2, even with respect to
the first variable. Then, the function

@/(f)(T,:L‘,t) =Dt * f(rv l’)
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is continuous on R? x [0, +00[, even with respect to the first variable and we have
V(r,z) € R?, % (f)(r,z,0) = f(r,2).

Proof. Let f be a bounded continuous function on R?, even with respect to the

first variable. From the relations (2.9) and (3.2), we get

a+1 . .
_ 2(a+1) / / T(r—a) (f) (tu, tv) 20 dudo,

1+U2+'02 a+2

#(f)(r,z,1)

Since, for all (r,z,t) € R? x [0, +00|, (u,v) € R2, we have

T(r,—ax) (fu) (tua tv) w2+l ‘ < HT (f./) H y2atl
(14 u? +v?)ot2 = (r,—z) cove (14 y2  p2)at2

u2a+1

(1 + 'LL2 + v2)a+2 4

< oo

u2o¢+1

(1 + U2 +U2)a+2
deduce that the function % (f) is continuous on R? x [0, +ool.
Moreover, for every (r,z) € R?,

a—|—1 T(r,—z) 00) 201
//1+u2+11 a+2uo‘ dudv

+1 2a+1
f(rx / / 15w+ o2)ai2 dudv

= f(rv LL‘)

and since the function (u,v) — is integrable on [0, +oo[xR, we

#(f)(r;x,0)

4. Principle of the Maximum

In this section, we will establish a principle of the maximum for the singular
partial differential operator

0? 20+1 0 0? 0?
(41) Ba = gEt 5 tas T

We use this principle to prove that the Poisson semigroup satisfies the inequality

V(2 (D) 0w 20" < 2 (IV (2 (), 8)]*) ),

This inequality plays an important role in the next section.
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Theorem 4.1.(Hopf) Let

n

I — ia..(w) 872+ b,(x)i
A J Ox;0x; &=’ ox;
7,7=1 J 7j=1 J

be an uniformly elliptic operator on a bounded connected set 2 C R™ such that the
functions a; j,b; j are continuous on €.

Let u be a function in C?(Q) N C°(Q) such that for every x € Q, Lu(z) > 0. If

there exists xg € ) such that sup u(z) = u(xg). Then, u is constant.
z€ Q

Proposition 4.2. Let ag,a1,T be positive real numbers and Q =] — ag, ap[x] —
ar,ai[x]0,T[. Letue C?(Q)NC°Q) such that
i. V(ryxz,t) € Q; u(r,x,t) =u(—r,a,t).
it. V(r,x,t) € Q; Aju(r,x,t) > 0.
If there exists (ro,xo,t0) € ; ro # 0 such that sup u(r,z,t) = u(re, zo,to)-
(r,xz,t)e Q
Then, u is constant.
Proof. Let u be a function satisfying the hypothesis. From i) we can assume that
ro > 0.
Let 0 < e < 1g and Q. =le, ag[x] — a1, a1[x]0,T[. Then, it is clear that the operator
A, is uniformly elliptic on . and we have
sup u(r, z,t) = sup u(r, z,t) = u(ro, xo, to).

Q. Q
Since (19, Zo,to) € e, then, from Theorem 4.1, we deduce that
V(r,z,t) € Qc, u(r,z,t) = u(re, zo,to)-
This means that for every € > 0 and (r, z,t) € |e, ag[x] — a1,a1[%x]0, T,
u(r, z,t) = u(re, o, to).
On the other hand, the function u is continuous on €. Then,

V(r,z) € ] —a1,a1[x]0,T[, w(0,2,t) = lim wu(r,a,t) = u(ro,xo,to)-

r—0

Hence, Y(r, z,t) € [0,a0[X] — a1,a1[x]0,T[, u(r,z,t) = u(rg, o, to).
From the hypothesis i), we conclude that

V(T‘,"E,t) € Q? U(T,:E,t) = ’U,(|7’|,:1},t) = U(TQ,J’JQ,to)-

Proposition 4.3. Let u be a function satisfying the hypothesis of Proposition 4.2.
If there exits (xo,t0) € | — a1,a1[x]0,T[ such that

sup u(r, z,t) = u(0, zo, to),
Q
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then u is constant on Q.

Proof. Let My = supu(r,z,t) = u(0,z0,t9). We shall prove that there exists
Q
(r1,21,t1) € Q; r1 # 0, such that

u(ry, 1, t1) = u(0, 2o, tg) = Mj.
In fact, suppose that we have
(4.2) Y(r,z,t) € Q; r#0, u(r,z,t) < M.
Let us define the function ¥ and the set K by
P(r,xz,t) = 2’ —(—0)’~(t—t0)* _ 1, K={(r=zt)e Q ¢(rzt) >0}
Since (2 is an open set, there exists € > 0 such that
B'(e) = {(r,z,t) € R® r* + (x —x0)*> + (t —to)* < *} C Q.

The set K NJB’(¢g) is a compact one. Then there exists (re, x2,t2) € K NOB/(e)
such that
My = sup u(r,z,t) = u(re, xa,t2).
KNOB’'(g)

Since
12+ (22 — 20)? + (t2 — t)2 = €2 and ¢ (ry, w2, 15) = €22~ (@220 ~(tamt0)® 1 5

then, 79 # 0. Thus, by the assertion (4.2), My < M;.
On the other hand, let M3 = sup P(r,z,t), we have M3z > (e, zo,t0) =
(r,xz,t)e OB'NK
e —1>0.
Let
My — M,
Ms

By computation, for every (r,z,t) € ,

5elo, [ and o(r,2,2) = u(r,2, ) + 697, 2, ).
Aoﬂb(r,%t) _ 4|:<20é + 1) + Ar2 + (.’1? _ .%’0)2 + (t - t0)2] 62r2—(x—x0)2—(t—t0)2.

Since Ayu(r,z,t) = 0 on Q, we deduce that

(4.3) Y(r,z,t) € Q, Ayo(r,x,t) = 46Q2a+ 1)627"2_(’”_”")2_“_’50)2 > 0.

Now,

N(r,z,t) € 0B () N K¢ ¥(r,x,t) < 0; and then, ¢(r,z,t) < M.

N(r,z,t) € OB'(e) N K, ¢(r,z,t) < My + dMs < My, which shows that

(4.4) V(r,z,t) € OB'(e); ¢(r,z,t) < M.
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Let (r3,xz3,t3) € B’(e) such that

sup Qf)(ﬁl’,t) = ¢(T3,$3,t3).
(r,xz,t)€ B'(e)
We have
¢(T3a €3, t3) = (b(oa £, tO) = M17
and from the relation (4.4), we deduce that the function ¢ attains its maximum in
(T37I37t3) € B(s) = {(7’,1‘7t) € RS’ T2 + (l’ - ‘TO)2 + (t - t0)2 < 62}7 but
. For r3 #£ 0,

82 32 32
(4.5) And(rs, w3, tz) = Trf(Ts,fﬁ?ﬂts) + 87;3(7’3@3,153) + Tt;b(rg,x&t?,) < 0.
02 0?
Ao#(0,23,13) = (2 + 2)373(07953,1‘/3) + %(0’3337?53)
0%¢
(46) + ﬁ(o,l‘g,t?,) < 0.

The relations (4.5) and (4.6) contradict the relation (4.3) and show that the assertion
(4.2) can not be true, that is there exists (r1,z1,¢t1) € Q; 71 # 0 such that

supu(r, x,t) = u(ry, x1,t1) = M,
Q

and the proof is complete by applying Proposition 4.2.

Theorem 4.4. Let ag,a1,T be positive real numbers and Q =] — ag,ao[x] —
ar,ai[x]0,T[. Let u € C2(Q)NC°Q) such that

. Y(r,x,t) € Q; u(r,x,t) =u(—r,x,t).

i. Y(r,z,t) € Q; Aqu(r,x,t) > 0.

Then, if u attains its mazimum in €, u is constant.

Proof. The proof follows immediately from Proposition 4.2 and Proposition 4.3.
The Theorem 4.4 implies the following interesting result.

Theorem 4.5. Let u € C?(R?*x]0,+o0[) N CO(R? x [0, +00[) such that
i. V(r,z,t) € R? x [0, +oo[; u(r,x,t) = u(—r,z,t).
ii. V(r,x) € R2, u(r,z,0) > 0.

1. lim u(r,z,t) = 0.
r24+x2+4+1t2——+o00

vi. ¥(r,z,t) € R? x [0,+00[; Aqu(r,z,t) < 0. Then u is non negative.

Proof. Suppose that there exists (19, 2o, t9) € R? x [0, +00[; u(ro,zo,to) < 0. Then,
w attains its minimum in (r1,21,t1) € R? x [0, +o0].

Since u(ry,x1,t1) < u(ro, xo,to) < 0, and using the hypothesis ii), we deduce that
t1 > 0.
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Let ag,a1,T be positive real numbers such that (r1,21,¢1) € Q =] — ag, ag[x] —
a1,a1[x]0,T[, let v = —u. Then, v satisfies the hypothesis of Theorem 4.4 on
Q =] — ag, ap[X] — a1,a1[x]0, T[ and attains its maximum in (ry,z1,t1) € .

This implies that
Y(r,z,t) € Q; u(r,z,t) =u(ry,z1,t1) <O0.
In particular, for every T > 4,
u(ry, z1,T) = u(ry, z1,t1) <O.
This contradicts the fact that

i T)=0.
Tiriloou(rl,x1, )=0

Theorem 4.6. For every f € Z.(R?), we have

v(r,@,1) € REX]0, +ocl, [V(% (D) (@20 < 2 (IV(Z (D) (1)) (),

Proof. Let f € 2.(R?). As in Proposition 3.6, we put

o(f)(ra,t) = [V (% () (r,, 1),

and for every s > 0,
h(r,z,t) = hs(r,x,t) = %(U(f)(, . s))(r,:z:,t) —v(f)(r,z,s+1t).

Let us prove that the function h satisfies the hypothesis of Theorem 4.5.

. It is clear that for every f € 2.(R?), the function (r,z,t) — % (f)(r,z,t) is
infinitely differentiable on R? x [0, +-00[, consequently, for every s > 0, the function
(r,x,t) — v(f)(r,z, s +t) belongs to C?(R?x]0, +00o[) and is even with respect to
the first variable. On the other hand, from Proposition 3.6 i), for every s > 0, the
function v(f)(.,.,s) belongs to Cy (R?). Applying Lemma 3.8, it follows that the
function (r,z,t) — % (v(f)(.,.,s))(r,z,t) is continuous on R? x [0, +ocl.

Now, from the relation (3.13), it folows that % (v(f)(.,.,s)) is infinitely differen-
tiable on R?x]0, 4+o0].

We conclude that the function h = hg belongs to C?(R?x]0, +o0o[) N CO(R? x
[0,4+00[) and is even with respect to the first variable.
. Applying again Lemma 3.8, we deduce that for every (r,z) € R2,

h(r,z,0) = %v(f)(..9))(r,z,0) —v(f)(r,z,s)

= fv(fxrvxv 8) - 'U(f)(?“, Z, S)
0.
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. From Proposition 3.6 and Lemma 3.7, we have

lim v(f)(r,z,t) =0 and lim U (v(f)(.s-8))(r,z,t) =0.

r24x2+t2——+4o00 r24-x24t2—— 400
This involves that
lim h(r,x,t) = 0.

r24+x24+t2——+o00

. Using the relations (3.9), (3.13), (3.14), we deduce that for every (r,z,t)
€ R?x]0, o],

A, (% (w(F)(., .,s)))(r,m) —0.
So,

Aygh(r,x,t) = —Aa(v(f))(r,x,s—i—t)
= —Aa(v(H)(s+))(r ).

But,

Aa(v(f))(rz,s+t) =

Q
/N
—

(% ()5 +1)°)
2

(% ()5 +1)°)
(% () (r, 2,5+ t))2),

_|_
> S£> >
N
=
RERTE

Q
—
—~

on the other hand, for all p,v € C?(R%x]0, +0o0]),

Op 0 Op 0 Op 0
(@7) Do) = @dal)+vdale) +2(58 04 92 90 02 Ty

Using the fact that A, (%(f)) 0, A, (8890 (%(f))) = %(Aa(%(f)» =0 and
Aa(%(%(f))) ( o ) = 0, we deduce that
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however,

Aa(%(%(f)))(r,m 1)

= %(Aa(%(f)))(r,%s—i—t)—&-% %(%(f))(r,x,s—kt)
= 20‘7“7;1 %(%(f))(r,%s—i—t).
Then,
Aa(v(f))(rym, s +1) = 40‘;2(8 (@/(f))(r rs 1)
+2[(§22(% r:vs+t) +( f))(r,a;,s+t))2
+(§—;(%( (r,a s+t) }+4[(§ ag(%(f))(r,x,ert)))Q
# (GG @0 +0) ¢ (GG @) 0) ]
20,

wish means that
Agh(r,z,t) = —Ajv(f)(r,z, s +t) < 0.

Hence, the hypothesis of Theorem 4.5 are satisfied by the function h = h,. Conse-
quently, for every (r,z,t) € R?x]0,4o00[ and every s > 0,

%(v(f)(7 .75))(7",30715) —o(f)(r,z,s+1t) = 0.

That is ) )
yt(|v(%(f))(.,.,s)\ )(r,x) > V(% () (ra,s + 1)

In particular, for s = ¢,

V(@ (D) @20 < 2 (IV (2 (D)0 ) ),

5. LP-Boundedness of the Littlewood-Paley g-Function

This section contains the main result of this work.
Namely, using the results of the precedent sections, in particular, the principle of
maximum for the operator A,.We will prove that for every p €]1, +o00], there exists
a positive constant C, such that for every f € L?(dv,),

1
W llpwa < lg(Hllpva < Cpllf]
p

DiVa>
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where g(f) is the Littlewood-Paley g-function connected with the Riemann-Liouville
operator defined by

Definition 5.1. The Littlewood-Paley g-function associated with the Riemann-
Liouville operator is defined for f € Z.(R?) by

s =( [ [V @)eenfia)’

We start this section by some intermediary results.

Lemma 5.2. For all nonnegative functions f,h € 2.(R?), we have

/o - / (9(N(r2)) hir 2)dvi (1. 2)
‘2

<4/0+oo A+®At‘v(%(f))(r7w7t) U (h)(r, x, t)dve (r, x)dt.

Proof. By Fubini-Tonnelli theorem’s, we have

oo 2
/ /(g(f)(r,x)> h(r,z)dve(r, z)
o R
+oo +o0
- /0 [/o /R ‘v(%(f))(r’f”’ t)fh(ﬁ x)dve(r, :c)] tdt.

Applying Theorem 4.6, we obtain

too 2
[ [ (sthim) wira)dva ()
o R
+o0 +o0
</O t[/o /Rh(r,:c)<@%<|V(%(f))(.7.,%)F)(nx)dua(nm)}dt
+o0 +o0 9
:4/0 s[/o Ah(r,x)@s(’V(%(f))(.,.,s)| )(r,x)dua(r,x)}ds.

However, for all v, € L?(dv,,),

[ [ernztwenaen = [ [ 20000

Then,

+o0

(411, 2)) h(r, ), )

o R

4/0+Oos</o+oo/R%(h)(r,x,s) |V(%(f))(r,x,s)’2 dua(r,x)> ds.

N
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Lemma 5.3. For all nonnegative functions f, h € 9.(R?), we have

/O OO/O OO/R Ao [22(F) 2 ()] (r.2.1) 1t du(r.2) :/0 00/]R P20 2) hrs)dva (. 2).

Proof. Using the relation (4.7) and the fact that Ay (% (f)) = Aa(% (h)) =0,
we get

(5.1) Aa(%(D) = 2|V (],

S0,

Aa|@2(f) (W) =22 () [V (% (1) " + 42 ()5 (% (1)), (% (1).

Aa|22() ()| <22 )|V (2 (D) + 4% () [V (% ()] [V (% 0)].

Using the fact that for every (r,x,t) €R?x [0,4o00[,|%Z (f)(r,z,t)| < H/j;(f)ﬂlya
and |% (h)(r,z,t)| < || Fa(h)||1,v,, we claim that

Aa |22 ()2 ()] <21 FaDllwst 1 Za ) [V (2 () % 9 (2 (1) ).
Consequently

(r x,t)| t dt dv,(r,x)

< 2( \lg"( Miwve + 1 Za®)lv.)
/ / / |V(%(f)(r,a,t)) | + |V (% ( )(r,x,t))ﬂ t dt dv,(r, ),
and by the relation (5.1), we have

h (7" x,t)| t dt dv,(r,z)

(IIJa( Whwe + [ Falh ||1Va (r,z,1) ‘ t dt dl/a(r,:v)}

+ (1Za()ll e + [1Zal Hlua

(r,z,t) ‘ t dt dua(r,a:)}.

Applying [2 Theorem 4.3], we get

(r x,t)’ t dt dv,(r, x)

Ifa( )Illua+||Ja( )Illua)(llf\li,ya+\|h\|§,ua) < oo
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Thus, we can write

(5.2) :ALI&OO/OA/OA/IZAQ [22(5) 2 ()] (re.1) 1t dv (),

on the other hand,

/ / / A, [%Q(f) @/(h)} (rya,t) t dt dve(r,z) = I (A) + I(A) + I3(A),
0 0 —A

where

gl
=
Il
o\
S
c\
S
|
h S
~
Q

V) U W) (r2,1) ¢ dt dva(r,),

/
IQ(A):/(JA/OA/iW[%Q(f) YD) (r2.1) 1 dt dvi(r, ).

13(A):/OA/A/A ‘12[%2(]0) YD) (r2.1) 1 dt dvi(r, ).

and £, is given by the relation (3.9).
. By Fubini’s theorem,

1 vl (AUt 0
I(A) = TR TP A%t /0 [AE[%Q(f) %(h)] (A, z,t) t dt du,
with
% %2(f)@/<h)}(A,x,t> = (A xt) 5 O (@ (1) (Asa,t) 2 (h) (A, 1)
+ (%(f)f(A,m)aﬁ( (1) (A, .t).

Suppose that A > 2a. From [2, Lemma 4.2], for every (z,t) € Rx]0,+o0],
M M

@) w) (A <

(A% + 12 + x2)3a+5 S Aba+10°
M-
We deduce that |11(A)| < ATim and
(5.4) A'in}roo L(A) = 0.

. As the same way and using again [2, Lemma 4.2], we show that

(5.5) Jm D) = 0.
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. Let us checking I3(A). In fact,

// /08t2 )%(h))(r,z,t)tdt}dua(r,x),

but

2
| @ am)eenia = a4 5@ 2o
0

@) W) A) + (),

by [2, Lemma 4.1], for A > 0, and (r,z) € [0, +00[XR,

0
A [2(5) 2B (e, 4) — (27() % (1) 0, A)| < Oy + gara)
Consequently,
Aln}roolg Ainioo/ / f2(r, )h(r, z)dvy (1, )
(5.6) = /0 /Rf2(r,x)h(r,x)d1/a(r, x).

The proof is complete by combining the relations (5.2), (5.3), (5.4), (5.5) and (5.6).

Lemma 5.4. For all nonnegative functions f,h € Z.(R?), we have

[ [ 606)? e wyivatra
oo ) oo )
<2/0 /R|f(r,:v)| h(r,x)dua(r,x)JrS/O /Rf (r,z) g(f)(r,z) g(h)(r,z)dve(r, x)

where f* is defined by the relation (3.4).

Proof. From Lemma 5.2, we have

/O+OO/R(g(f)(r,x 2h (ryz)dve(r, )
<4/+w/+m/t\v (r, 2, 8)]> 2 (h) (r, x)dt dva(r, @),

on the other hand, by the relation (5.1), we get

/O+°°/R (g(f)(n 93)>2h(r7 x)dve (r, )
(5.7)

+o0 +o0
<2/o /0 /]RAC“(% () (ryz,t) % (h)(r,z, )t dt dva(r, ),
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however,
Do) % (W) = Da(ZP(F) % (h)+ 2% (f) Aa(% (D))
+ 20 NV(Z*(f)) | V(% (h) ).
Since Ao (% (h)) =0 and V(%2(f)) =2%(f) V(% (f)), we get

Aa(Z(f)) U (h) = Da(Z>(f) % (h)) — 4% (F){ V(% (D) | V(% (1)) ).
Consequently,

/+OO/ h(r, z)dve(r, )
< 2/04-00/0-5-00/]1{ a (h))(r,x,t)t dt dvy,(r, z)

+o00 p+oo
_/0 /0 /R%(f)(r’xvtxv(%(f))(rvmvt)\V(%(h))(r,x,t)>tdtdya(r,x),

and from Lemma 5.3,

/W/ h(r, 2)dva (r, z)

+oo
< 2/ f2(r,z) hr,z) dvg(r, z)

+o0 +oo
+8/ / % (f) (@, )| [V (Z () (r2,t)| [V (% (h)(r,2,t)|t dt dva(r, @).

Using Fubini’s theorem and the Cauchy schwartz inequality’s, we get

/+OO rxdz/a(r:c<2/+oo/f (r,2) h(r,z) dve(r,z)
+8/0+me (r,z K i |v( )(ryz,t)|° tdt /0 |V (% (h))(r,z,t)] tdt) }dya(r z)
= 2/0+OO/Rf2(r7x) h(r,z) dve(r, ) +8/0+OO/Rf*(r,x)g(f)(r,x)g(h)(r,x)dl/a(r, x).

Theorem 5.5. Let f be a nonnegative function; f € 9.(R?). For every p €
[4,4+o00[, the function g(f) belongs to LP(dv,) and we have

||9(f)||p,ua < Ap Hf”p,uaa

where
11
4, = V2[4 ) o) 22 —p
2 2
4 .57,
(5.8) + A1+ 16(p —2)2 (p(pil))p 922 p}
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Proof. Let p € [4,+0c0], then g € [2,+00]. Let ¢ be the conjugate exponent of £.

Then, g belongs to |1,2]. Finally, let f, h be nonnegative functions in %, (R?) such
that ||h||4,,, = 1. From Lemma 5.4,

[ 600 1ttt

(5.9)
0o ) oo )
< 2/0 /R|f(r,:z:)| h(r,x)dua(r,x)JrS/O /Rf (r,z) g(f)(r,z) g(h)(r,z)dve(r, ).

From Hoélder’s inequality,

(5.10) 2 / / (F0r,2))*h(r, ) dva(ra) < 2 F1R o Bllawe = 211

2
PsVa”

1 1 1
Since — + — 4+ — = 1, then, from the generalized Holder’s inequality,
p P g

8 / / 7 (r,2) o(f) () g(h)(r,2)dva(r, z)
)

(5.11 <8I pva 9N pva lg(P)lg.ve-
Now, from [2, Relation 4.40] and the fact that ¢ = ]% € 11,2] and ||h|lq,., =1,
we get
22;2(1 q 1
12 Mlgv. < .
(5.12) g (M)llg.ve . (q__l)

Applying the relations (3.5) and (5.12) and replacing g by %; we obtain
D

8 / / F*(r.2) o(f)(r2) g(h)(r,2)dva(r, z)

(5.13) <82 (p-2) ( )* 275 (| fllp 1190 lpve-

4
p(p—1)

Combining the relations (5.9), (5.10), (5.11) and (5.13), we deduce that for every
nonnegative function h € Z,(R?),

/ h / (9(F)(r,2))? h(r,2)dva(r, )
0 R
< fI20. +8VE (0—2) (

PV

11
)" 2777 |If]

4
p(p - 1) PVa ||g(f)||p,ya,
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and by duality,
2

lg*(Nllz v, Hg(NII5,v.
(5.14) < 21, +8V2(0 - 2)(

4 T
so=1y)” 27 Ml lla(£)]

PV
The inequality (5.14) shows that

(D lpva < Ap Il v

Remark 5.6. As the same way as the proof of [2, Proposition 4.6], we deduce that
for every f € 2.(R?) and every p € [4,+00], the function g(f) belongs to LP(dv,)
and we have

Hg(Pllp.va < 24p [[f]lpva
where Ay, is given by the relation (5.8).

Theorem 5.7. For every p € [4,+00], the mapping: f — g(f) can be extended
to the space LP(dvy) and for every f € LP(dv,), we have

Hg(Hlpve < 245 || £llpva-

Proof. The result follows from Remark 5.6, the density of Z.(R?) in LP(dv,) (see
also [2, Theorem 4.7]).
Now, we are able to prove the mean result of this work.

Theorem 5.8. For every p € ]1,+00[, the mapping: f — g(f) can be extended
to the space LP(dv,,) and for every f € LP(dv,), we have

9N lpva < By [[fllpvas

where
2%3" (p \E
2 55— (zprg)pv ifpe L,z
(5.15) By = Y 2% A7, ifpe [2.4],
24,, ifpe [4,40,

and A, is given by the relation (5.8).

Proof. The result follows from [2, Theorem 4.7], Theorem 5.7 and the Riesz-Thorin
theorem’s [26, 28] for p € [2,4].

Theorem 5.9. For every p € ]1,+oo[ and every f € LP(dv,), we have
fllpra <4 Bp%l g (Hlpva

where By, is given by the relation (5.15).
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Proof. For every f € 2.(R?), we put

0 (f)(rz) = (/Ooo 2 @ (n)rofa)

Then, for every (r,z) € [0, +o0[XR,

(5.16)

g (f)rx) < g(f)r ),

and by the relation (3.8), we have

#(f)(

S0,

9
ot

)(r,z, 1) //VT Z(F) 1 A) Jalrm) € dva (),

(@(N)0ra,0) = F (= ViE TR VI Z () ().

Thus, by Fubini’s theorem

o] e[ [ |7 (= ViEo eV F ) | ()] .

Applying Plancherel theorem, we obtain

g1 (N30,

= [T [ I F (0 P 0
OOO 0 R -
= [ [uedIF 0P e VTR dedu e

_ //V (. Vv, 3) = 7 1110,

wish means that

(5.17)

1
Hgl(f)||2,ua = §||f‘|2,ua'

On the other hand, for every h € Z,.(R?),

/OmAh(T,x)f(r,x)dya(r7x) _

1
(1F +All3,.,) = 7 (1 = 2ll3s.),

= =

and by the relation (5.17),

(5.18) / h / h(r2) f(r2)dva(r2) = Nln(f + DB — g1 (f — W),

By standard
(5.19)

computation, we have

lgr(f + R[5, — H!h(f IR,
_4/ //0 ))(hx,t)%(%(h))(r,x,t)tdt}dya(r’x).
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Combining the relations (5.18) and (5.19), we get
/OO/ h(r,x) f(r,x)dve(r, x)
o Jr
:4/0 /R[/ %(%(f))(r,x,t)%(%(h))(nx,t)t at] dva(r, ).

0

Applying Hoélder’s inequality with respect to the measure t dt, it follows that

’ /0 ) /]R h(m)f(nrv)dva(r,x)) <4 /0 h /R 91(£)(r,2) g1(h)(r,x)dve(r,z).

Let p,q € ]1,4+o0[; % + % = 1, again by Holder’s inequality with respect to the
measure dv,(r,x) and applying the relation (5.16), we have

‘/ODO/Rh(T’x)f(’"’m)dVa(T’w)‘ < Alg(Hllpva 1190 lgva

and by means of Theorem 5.8,

‘Améh(r,x)f(r,m)dua(r,x)‘ < 4By l9(Hllpwa 1Bllgm. -

In particular, for every h € Z.(R?); ||hl|gv. <1,

[ oo sraddvn )| < 4B ey (e
0
by duality,
1 lp e < 4Bz [1g(f)lp,va-
The proof is complete by the fact that Z.(R?) is dense in LP(dvy).

Conclusion. By Theorem 5.8 and Theorem 5.9, we deduce that for every p €
]1, +00], there exists a positive constant C, such that for every f € LP(dv,);

1
o Wllpwe <lg(Dllpva < Cp llfllpva-
p
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