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ABSTRACT. In this paper, we use the Riemann-Liouville fractional integrals to establish
several new inequalities for some differantiable mappings that are connected with the
celebrated Ostrowski type integral inequality.

1. Introduction

In 1938, the classical integral inequality established by Ostrowski as follows:

Theorem 1.1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose
derivative f' : (a,b) — R is bounded on (a,b), i.e., ||f'||., = sup |f'(t)] < oo.

te(a,b)
Then, we have the inequality:
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for all @ € [a,b]. The constant % is the best possible.

Recently, several generalizations of the Ostrowski integral inequality for map-
pings of bounded variation and for Lipschitzian, monotonic, absolutely continuous
and n-times differentiable mappings with error estimates for some special means
and for some numerical quadrature rules are considered by many authors.

In [6], M. Alomari and M. Darus proved some Ostrowski’s type inequality for
the class of convex(concave) functions:

Theorem 1.2. Let f : I C [0,00) — R, be a differentiable mapping on I°(the

interior of I) such that f' € L[a,b], where a,b € I with a < b. If |f’|% is conver
on [a,b], then the following inequality holds:

(1.1)

b
|f<:c> e G
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2

for each x € [a,b], where % + % =1.

Theorem 1.3. Let f : I C [0,00) — R, be a differentiable mapping on I° such

that ' € Lla,b], where a,b € I with a < b. If |f’|% is concave on [a,b], then, the
following inequality holds:

(1.2)

b
f@) - [ fa)da

for each x € [a,b], where p > 1.

Theorem 1.4. Let f : I C [0,00) — R, be a differentiable mapping on I° such
that f' € Lla,b], where a,b € I with a < b. If |f'|* is concave on [a,b], ¢ > 1 and
|f/(x)| < M, then the following inequality holds:
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In recent years, such inequalities were studied extensively by many researchers
and numerious generalizations, extensions and variants of them appeared in number
of papers see ([1]-[8])

Now, we give some necessary definitions and mathematical preliminaries of frac-
tional calculus theory which are used throughout this paper, see([18]).

Definition 1.1. Let f € Ly[a,b]. The Riemann-Liouville integrals J&, f and J f
of order @ > 0 with a > 0 are defined by

S f@) = g [ =07 S0, @ > a

and

b
T f(x) = ﬁ/ (t—2)° " f(t)dt, = <b

respectively where I'(a) = [e “u*"'du. Here is J, f(z) = J)_ f(z) = f(=).
0

In the case of & = 1, the fractional integral reduces to the classical integral.
For some recent results connected with fractional integral inequalities see ([9]-

[17]).
2. Main Results

In order to prove our main theorems, we need the following lemma:

Lemma 2.1. Let f: I C R — R be a differentiable mapping on I° where a,b € I
with a < b. If f' € Lla,b], then, for all x € [a,b] and o > 0 we have:

e v - S )+ 0z )
= /l m(t) f'(ta + (1 —t)b)dt
0
for each t € [a, b], where
B —t%, te |0, 3==
mit) = (1—t), te(b=z1|’

for all x € [a, b].
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Proof. By integration by parts, we can obtain

I = /lm(t)f'(ta+(1—t)b)dt

1

/M (—t*) f'(ta+ (1 — t)b)dt + / (1—1)*f'(ta+ (1 —t)b)dt
0

b—x

b—a

b—a\” =
- (=) it e e 0 ona

0

+($_a)a fl@) @ /1 (1—)*"f(ta+ (1 — t)b)dt.

b—a) b—a b—a [

Using the change of the variable u = ta + (1 — ¢)b for t € [0, 1], which gives

_ b e e
I = b () (b_a)aﬂ/z (b—u)*" f(u)d
(x_a)a o ‘ a—1
m (w)_(ba)aﬂ/a (u—a) f(u)du

(r—a)*+ (b—x)~ B Ma+1)
(b —a)a+l ] f(z) (b—a)"!

[T+ F(0) + T2 f(a)].

This is completed the proof. O
The main results may be stated as follows:

Theorem 2.1. Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b
such that f' € Lla,b]. If |f'| is convex on [a,b] and x € [a,b], then the following
inequality for fractional integrals with a > 0 holds:

| [(az —a)*+ (b—1z) P(e+1) (T2 F(b) + T f(a)]

(b—a)o+t ] fle) - (b— a)*H!

oy < a{(B e e
.

(=i * e (1 5] 0]

where I' is Fuler Gamma function.
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Proof. From Lemma and since |f’| is convex on [a, b], we have

(x —a)* + (b—x) . T+l o, o
H (b —a)otl }ﬂ )= gyt el 0+ T (@)
< /07 I—tlo‘If’(ta+(1—t)b)ldt+ﬂm (1= )| |f'(ta + (1 — t)b)| dt
g:w b;a
= / [t (@)l + (L= t)[f/(b)]] dt +/b7, (1= [t]f (@) + (1 = t) | £ (b)]] dt
0 =
[ p—w) PP —(@—a) 1 (-],
- [ L e
1 (x—a)a+2 (b—x)a+2 1 (b_m)a-‘rl
i [a+2 (b —a)o+? a+1 (b—a)a+1] £ (b)]

- (e [ )
+a+2((§‘§§ZI§+§Z‘§§ZE[a11+;§ ‘e

which completes the proof. a

Corollary 2.1. If we take x = ‘%H’ in (2.1), we get

22) () - EEe ) 500+ )
bo (I7@I+170)
2(a+1) ( 2 ) '

Theorem 2.2. Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b
such that f' € Lla,b]. If |f'|? is convex on [a,b], ¢ > 1 and x € [a,b], then the
following inequality for fractional integrals holds:

ey || e - e s+ 2 s

1 wor (1 @)+ [f/ B\
- [ (b—=x
= ma (pr 1} l( ) ( 2 )

tz—a) (If'(a:)|’1 n |f’(a)|‘1> é]

2
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wher85+5fl,a>0.
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Proof. From Lemma and using the well known Holder inequality, we have

[ O o) - ot s+ 2 s
< /0 |[—t|™ | f (ta+(1—t)b)dt—l—/ﬁg|(1—t)a||f (ta+ (1 —t)b)|dt
< (/b:ita”dt>p (/ |f’(ta+(1—t)b)|th>q
0 0

B <[w(1 - t>””dt> p (/1 |f'(ta+ (1 — t)b)th> "

b—a b—a

Since |f'] is convex, by Hermite-Hadamard inequality we have,

b—ax

oy v b (@ISO
/0 (b + (1 — £)b)| dtSba< . )
v Ve 2o (W@ @
J 7t oo < G (EETE)

and by simple computation

b—x
ot 1 bh— ap+1
/ trdt = =)
0 ap+1\b—a

1 ap+1
/ (1= )it = — (2@ .
bz ap+1\b—a

(bia)a+1 ]f(x)_(r(_a4)—;+)1[ wr J(0) + T2 f(a)]

<| IR >|>31
(f’ \q+|f >|>q]

where % + % = 1. Hence, using the formula I'(a + 1) = al'(«) (o > 0) for Euler
Gamma function, the proof is complete. O

Therefore

Remark 2.1. In Theorem , if we choose o = 1, then we obtain inequality (1.1).
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Corollary 2.2. If we take z = “£* in (2.3), we have

() R ot 1]

< ba( ! )5[<|f'<“;b>!q+|f'<b>Q> (\f B +1f'(a ”
= 4 \ap+1 2 2

Theorem 2.3. Let f : [a,b] — R, be a differentiable mapping on (a,b) with a < b
such that f' € Lla,b]. If |f'|? is convex on [a,b], ¢ > 1 and x € |a,b], then the
following inequality for fractional integrals holds:

(=0t -2)] Tt e
(2.4 H | o) = G bz g0+ 22 St

) |
» {(’;:Z)W (=) i+ (o + =2 o)
¥ (”;:j)aﬂ () rer+ (=2 If’(b)lqr}

where o > 0 and I' is Euler Gamma function.
Proof. From Lemma and using the well known power mean inequality, we have

q

(2.5) ‘ [(x L U x)a] f(e) - Dt D)

(b—a)otl m [+ f(b) + T f(a)]
e 1
< /0 =" [ f'(ta + (1 t)b)ldH/H (=) f(ta+ (1 = t)b)| dt
<

(/0 tad’f) ( /0 [ (ta + (1 — £)b)] dt)
1 1-3 1
+</bw(1t)adt> ([) I(lt)a|f,(ta+(1t)b)|th>

q
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Since |f’|? is convex, we have

(2.6) / T e (1 - D)t
< / e @+ -0 |0 dt
. a—+2
- (B v
1 (b—2\*T" 1 fb—a2\“TR o,
+<a+1(b_a) s (1) >|f<b>|
and
(2.7)
/H )1 (ta + (1= b)|dt
< [)ml—t [EIF @+ (L= 1) | 0] de

b—a

1 :Ufa att 1 z—a\*"? ,
( b—a _a+2<b—a> >|f(a)|q
_ a+2
=) o

Therefore, if we write (2.6) and (2.7) in (2.5), then we get (2.4) which is required.O

+

Corollary 2.3. If we take x = “£> in (2.4), we have

1(%30) - Tmar ey £+ Ty 1)

1 \"i/ 1 1\ T
<
- a+1 a+2 2

x {(If’(a)lq Fomrer) v (e - |f'<b>“)"}.

Theorem 2.4. Let f : [a,b] C [0,00) — R, be a differentiable mapping on (a,b)
with a < b such that f' € Lla,b]. If | f'|? is concave on [a,b] and = € [a,b], then the
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following inequality for fractional integrals holds:

(2. H(z(‘?fj)ﬁil L] s - G )+ 72 1)

)l ()]

2

1

S -
(ap+1)7 (b—a)*™

(b—z)*t"

for each x € [a,b], where p > 1.

Proof. From Lemma and using the Holder inequality, we have

e || SRS - gk s ) + a2 f (@)

1

< /E\—t|a|f’(ta+(1—t)b)|dt+/b_ |(1 =) |f (ta+ (1 —t)b)| dt
0 =
N[ o z
< (/0 tdt) </0 ' (ta+ (1 — )] dt)

* (ﬁ (1= t)apdt> p (ﬁ |/ (ta + (1 — £)b)[? dt) q.

b—a b—a

Since | f’|? is concave on [a,b], by Hermite-Hadamard’s inequality we get

= b— b a
(2.10) /0 I (ta+ (1 — t)b)|" dt < b_z f’( ;x)
and

! , r—al, (fa+tx K
(2.11) /g If'(ta + (1 —t)b)|" dt < — f < 5 >

Therefore, if we write (2.10) and (2.11) in (2.9), we get (2.8). This completes the
proof. O

Remark 2.2. In Theorem , if we choose o = 1, then the inequality (2.8) reduces
the inequality (1.2) of Theorem .

Corollary 2.4. In Theorem if we take x = “TH’, we have

£(450) - Rt [y s+ )

2 2 2
b—a 1 , (a+3b , (3a+b
(=) ()]

4 (ap+1)7
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Theorem 2.5. Let f : [a,b] C [0,00) — R, be a differentiable mapping on (a,b)
with a < b such that f' € La,b]. If | f'|? is concave on [a,b], ¢ > 1 and x € [a,b],
then the following inequality for fractional integrals holds:

(2.12)

(x_a)a+(m_b)a M « a a
| |: (b _ a)oc+1 :| f(.l?) - (b _ a)a-i-l [J:v+f(b) + Jz*f( )]

b—az\*" I b+ (a+ 1)z L (2=e ot I a+ (a+ 1z
b—a a+2 b—a a+2 ’
Proof. We note that by concavity of |f’|? and power-mean inequality, we have

H(xa)mr(:cb)a} flx) — T(a+1)

1
a+1

[T+ F(b) + T3 f(a)]

(b —a)otl (b —a)ot!
b=z 1
< / |—t|o‘|f’(ta—|—(l—t)b)\dt—i—ﬁi (1 =8 |f (ta+ (1 —t)b)|dt
0 e
b 1-3 b 7
e T f b+ (1 )| d
< (/ ' t) (/ 1 |f/(ta + (1 - 1)b) t)

+ (ﬂlm(l—t)“df> q (ﬁlz(l—t)o‘lf'(twr(l—t)b)th>q.

b—a b—a

Accordingly, by Lemma and the Jensen integral inequality, we obtain

b box H @ a
/M 1 (ta+ (1—)b)[ dt < (/b tadt> 7 Jo "t (tff:“ (1 —t)b)dt
0 0 fom tadt

L b=\ (b (et D[
B a+1<ba> ! (M)
and
: (1 =) |f'(ta + (1 —t)b)|* dt
1 / fgii(l—t)a(ta+(1—t)b)dt !
: (ﬂgi(l_t) dt) g ( Joee (1= t)2dt )

q

1 r—a ol
a+1\b—a

I (a +(ioz++21)q;>
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Therefore

(‘T*a’)a+(xib)a M « « a
|: (b — a)a-i-l :| f(l‘) B (b _ a)a+1 [‘]a:+f(b) + J:z:*f( )]

1 b— a2\ > f b+ (a+ Dz (2@ ot r a+ (a+ Dz
Ta+1 b—a a+2 b—a a+2
which completes the proof. O

Remark 2.3. In Theorem , if we choose o = 1, then the inequality (2.12) reduces
the inequality (1.3) of Theorem .

Corollary 2.5. If we take x = ‘IT'H’ in (2.12), we have

1(*2) - T Py 10+ eyt

I (a(a Jrzl()(;;bz()oz+3))‘Jr I (a(a +23()a++b2()a+1))‘}.

< dwen
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