References
- Hadjigogos, K. (2003) The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med., 45, 7-13.
- Harris, E.D., Jr., Faulkner, C.S., 2nd and Brown, F.E. (1975) Collagenolytic systems in rheumatoid arthritis. Clin. Orthop. Relat. Res., (110), 303-316.
- Dai, S.M., Shan, Z.Z., Xu, H. and Nishioka, K. (2007) Cellular targets of interleukin-18 in rheumatoid arthritis. Ann. Rheum. Dis., 66, 1411-1418. https://doi.org/10.1136/ard.2006.067793
- Otero, M. and Goldring, M.B. (2007) Cells of the synovium in rheumatoid arthritis. Arthritis Res. Ther., 9, 220. https://doi.org/10.1186/ar2292
- Scott, D.L., Wolfe, F. and Huizinga, T.W. (2010) Rheumatoid arthritis. Lancet, 376, 1094-1108. https://doi.org/10.1016/S0140-6736(10)60826-4
- Abramson, S.B. and Amin, A. (2002) Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology (Oxford), 41, 972-980. https://doi.org/10.1093/rheumatology/41.9.972
- Carrillo Gutierrez, O.Y., Perez Sanchez, A.G., Medina Serriteno, N. and Rodriguez Orozco, A.R. (2007) Side effects of COX-2 selective inhibitors. Critic related with its administration in patients with rheumatoid arthritis and osteoarthritis. Rev. Alerg. Mex., 54, 116-122.
- Chen, Y.F., Jobanputra, P., Barton, P., Bryan, S., Fry-Smith, A., Harris, G. and Taylor, R.S. (2008) Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation. Health Technol. Assess., 12, 1-278.
- Shiozawa, S. and Tokuhisa, T. (1992) Contribution of synovial mesenchymal cells to the pathogenesis of rheumatoid arthritis. Semin. Arthritis Rheum., 21, 267-273. https://doi.org/10.1016/0049-0172(92)90058-L
- Tutuncu, Z. and Kavanaugh, A. (2007) Rheumatic disease in the elderly: rheumatoid arthritis. Rheum. Dis. Clin. North Am., 33, 57-70. https://doi.org/10.1016/j.rdc.2006.12.006
- Vergunst, C.E., van de Sande, M.G., Lebre, M.C. and Tak, P.P. (2005) The role of chemokines in rheumatoid arthritis and osteoarthritis. Scand. J. Rheumatol., 34, 415-425. https://doi.org/10.1080/03009740500439159
- Combe, B. (1998) Inflammation and joint destruction during rheumatoid polyarthritis: what relation? Presse Med., 27, 481-483.
- Hauselmann, H.J. (1997) Mechanisms of cartilage destruction and novel nonsurgical therapeutic strategies to retard cartilage injury in rheumatoid arthritis. Curr. Opin. Rheumatol., 9, 241-250. https://doi.org/10.1097/00002281-199705000-00011
- Meyer, O, (2000) Role of anti-TNF therapy in rheumatoid arthritis. Presse Med., 29, 463-468.
- Reines, B.P. (2004) Is rheumatoid arthritis premature osteoarthritis with fetal-like healing? Autoimmun. Rev., 3, 305-311. https://doi.org/10.1016/j.autrev.2003.11.002
- Kastrinaki, M.C. and Papadaki, H.A. (2009) Mesenchymal stromal cells in rheumatoid arthritis: biological properties and clinical applications. Curr. Stem Cell Res. Ther., 4, 61-69. https://doi.org/10.2174/157488809787169084
- Lombardi, A., Pignone, A., Perfetto, F., Tarquini, R., Partsch, G. and Matucci-Cerinic, M. (1993) The enzymatic mechanisms involved in the pathogenesis of rheumatoid arthritis and arthrosis. The role of metalloproteases and serine proteases in the breakdown of articular cartilage. Recenti Prog. Med., 84, 634-641.
- Shiozawa, S. and Shiozawa, K. (1988) A review of the histopathological evidence on the pathogenesis of cartilage destruction in rheumatoid arthritis. Scand. J. Rheumatol. Suppl., 74, 65-72.
- Bouffi, C., Djouad, F., Mathieu, M., Noel, D. and Jorgensen, C. (2009) Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford), 48, 1185-1189. https://doi.org/10.1093/rheumatology/kep162
- Magliano, M. (2008) Obesity and arthritis. Menopause Int., 14, 149-154. https://doi.org/10.1258/mi.2008.008018
- Amin, A.R. and Abramson, S.B. (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr. Opin. Rheumatol., 10, 263-268. https://doi.org/10.1097/00002281-199805000-00018
- Martel-Pelletier, J., Alaaeddine, N. and Pelletier. J.P. (1999) Cytokines and their role in the pathophysiology of osteoarthritis. Front. Biosci., 4, D694-D703. https://doi.org/10.2741/A387
- Blanco, F.J., Guitian, R., Vazquez-Martul, E., de Toro, F.J. and Galdo, F. (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum., 41, 284-289. https://doi.org/10.1002/1529-0131(199802)41:2<284::AID-ART12>3.0.CO;2-T
- Hashimoto, S., Ochs, R.L., Komiya, S. and Lotz, M. (1998) Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum., 41, 1632-1638. https://doi.org/10.1002/1529-0131(199809)41:9<1632::AID-ART14>3.0.CO;2-A
- Yatsugi, N., Tsukazaki, T., Osaki, M., Koji, T., Yamashita, S. and Shindo, H. (2000) Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J. Orthop. Sci., 5, 150-156. https://doi.org/10.1007/s007760050142
- Cao, M., Westerhausen-Larson, A., Niyibizi, C., Kavalkovich, K., Georgescu, H.I., Rizzo, C.F., Hebda, P.A., Stefanovic-Racic, M. and Evans, C.H. (1997) Nitric oxide inhibits the synthesis of type-II collagen without altering Col2A1 mRNA abundance: prolyl hydroxylase as a possible target. Biochem. J., 324, 305-310. https://doi.org/10.1042/bj3240305
- Taskiran, D., Stefanovic-Racic, M., Georgescu, H. and Evans, C. (1994) Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem. Biophys. Res. Commun., 200, 142-148. https://doi.org/10.1006/bbrc.1994.1426
-
Kim, S.J., Hwang, S.G., Shin, D.Y., Kang, S.S. and Chun, J.S. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NF
${\kappa}$ B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem., 277, 33501-33508. https://doi.org/10.1074/jbc.M202862200 - Kim, S.J., Ju, J.W., Oh, C.D., Yoon, Y.M., Song, W.K., Kim, J.H., Yoo, Y.J., Bang, O.S., Kang, S.S. and Chun, J.S. (2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxideinduced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem., 277, 1332-1339. https://doi.org/10.1074/jbc.M107231200
-
Kim, S.J., Kim, H.G., Oh, C.D., Hwang, S.G., Song, W.K., Yoo, Y.J., Kang, S.S. and Chun, J.S. (2002) p38 kinase-dependent and -independent Inhibition of protein kinase C
${\zeta}$ and -${\alpha}$ regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem., 277, 30375-30381. https://doi.org/10.1074/jbc.M205193200 - Klotz, U. (1985) Clinical efficacy of oral 5-aminosalicylic acid in the treatment of inflammatory bowel disease. Am. J. Gastroenterol., 80, 660.
- Peppercorn, M.A. (1984) Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med., 101, 377-386. https://doi.org/10.7326/0003-4819-101-3-377
- Astbury, C., Taggart, A.J., Juby, L., Zebouni, L. and Bird, H.A. (1990) Comparison of the single dose pharmacokinetics of sulphasalazine in rheumatoid arthritis and inflammatory bowel disease. Ann. Rheum. Dis., 49, 587-590. https://doi.org/10.1136/ard.49.8.587
- Plosker, G.L. and Croom, K.F. (2005) Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs, 65, 1825-1849. https://doi.org/10.2165/00003495-200565130-00008
- Azadkhan, A.K., Truelove, S.C. and Aronson, J.K. (1982) The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br. J. Clin. Pharmacol., 13, 523-528. https://doi.org/10.1111/j.1365-2125.1982.tb01415.x
- Klotz, U. and Schwab, M. (2005) Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv. Drug Deliv. Rev., 57, 267-279. https://doi.org/10.1016/j.addr.2004.08.007
- Friedman, G. (1986) Sulfasalazine and new analogues. Am. J. Gastroenterol., 81, 141-144.
- Klotz, U. (1985) Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin. Pharmacokinet., 10, 285-302. https://doi.org/10.2165/00003088-198510040-00001
- van Hees, P.A., Bakker, J.H. and van Tongeren, J.H. (1980) Effect of sulphapyridine, 5-aminosalicylic acid, and placebo in patients with idiopathic proctitis: a study to determine the active therapeutic moiety of sulphasalazine. Gut., 21, 632-635. https://doi.org/10.1136/gut.21.7.632
- Yazdanian, M., Glynn, S.L., Wright, J.L. and Hawi, A. (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res., 15, 1490-1494. https://doi.org/10.1023/A:1011930411574
- Yoon, Y.M., Kim, S.J., Oh, C.D., Ju, J.W., Song, W.K., Yoo, Y.J., Huh, T.L. and Chun, J.S. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem., 277, 8412-8420. https://doi.org/10.1074/jbc.M110608200
-
Ryu, J.H., Kim, S.J., Kim, S.H., Oh, C.D., Hwang, S.G., Chun, C.H., Oh, S.H., Seong, J.K., Huh, T.L. and Chun, J.S. (2002) Regulation of the chondrocyte phenotype by
${\beta}$ -catenin. Development, 129, 5541-5550. https://doi.org/10.1242/dev.00110 - Poole, A.R. (2003) Cartilage in health and disease in Arthritis and Allied Conditions (McCarthy, D.J. and Koopman, W.J. Ed.) Lea and Febiger, Philadelphia, pp. 279-333.
- Goldring, M.B., Birkhead, J., Sandell, L.J., Kimura, T. and Krane, S.M. (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J. Clin. Invest., 82, 2026-2037. https://doi.org/10.1172/JCI113823
- Benya, P.D., Padilla, S.R. and Nimni, M.E. (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15, 1313-1321. https://doi.org/10.1016/0092-8674(78)90056-9
- Gay, S., Gay, R.E. and Koopman, W.J. (1993) Molecular and cellular mechanisms of joint destruction in rheumatoid arthritis: two cellular mechanisms explain joint destruction? Ann. Rheum. Dis., 52, S39-S47. https://doi.org/10.1136/ard.52.Suppl_1.S39
- Sandell, L.J. and Aigner, T. (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res., 3, 107-113. https://doi.org/10.1186/ar148
- Myers, L.K., Kang, A.H., Postlethwaite, A.E., Rosloniec, E.F., Morham, S.G., Shlopov, B.V., Goorha, S. and Ballou, L.R. (2000) The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum., 43, 2687-2693. https://doi.org/10.1002/1529-0131(200012)43:12<2687::AID-ANR8>3.0.CO;2-9
- Oh, C.D., Chang, S.H., Yoon, Y.M., Lee, S.J., Lee, Y.S., Kang, S.S. and Chun, J.S. (2000) Opposing role of mitogenactivated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem., 275, 5613-5619. https://doi.org/10.1074/jbc.275.8.5613
Cited by
- Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells vol.37, pp.4, 2017, https://doi.org/10.3892/or.2017.5441