DOI QR코드

DOI QR Code

Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes

  • Lee, Won Kil (Department of Biomedical Laboratory Science, Namseoul University) ;
  • Kang, Jin Seok (Department of Biomedical Laboratory Science, Namseoul University)
  • Received : 2015.11.16
  • Accepted : 2016.01.29
  • Published : 2016.04.15

Abstract

This study was conducted to examine the cellular regulatory mechanisms of sulfasalazine (SSZ) in rabbit articular chondrocytes treated with sodium nitroprusside (SNP). Cell phenotype was determined, and the MTT assay, Western blot analysis and immunofluorescence staining of type II collagen was performed in control, SNP-treated and SNP plus SSZ ($50{\sim}200{\mu}g/mL$) rabbit articular chondrocytes. Cellular proliferation was decreased significantly in the SNP-treated group compared with that in the control (p < 0.01). SSZ treatment clearly increased the SNP-reduced proliferation levels in a concentration-dependent manner (p < 0.01). SNP treatment induced significant dedifferentiation and inflammation compared with control chondrocytes (p < 0.01). Type II collagen expression levels increased in a concentration-dependent manner in response to SSZ treatment but were unaltered in SNP-treated chondrocytes (p < 0.05 and < 0.01, respectively). Cylooxygenase-2 (COX-2) expression increased in a concentration-dependent manner in response to SSZ treatment but was unaltered in SNP-treated chondrocytes (p < 0.05). Immunofluorescence staining showed that SSZ treatment increased type II collagen expression compared with that in SNP-treated chondrocytes. Furthermore, phosphorylated extracellular regulated kinase (pERK) expression levels were decreased significantly in the SNP-treated group compared with those in control chondrocytes (p < 0.01). Expression levels of pERK increased in a concentration-dependent manner by SSZ but were unaltered in SNP-treated chondrocytes. pp38 kinase expression levels increased in a concentration-dependent manner by SSZ but were unaltered in control chondrocytes (p < 0.01). In summary, SSZ significantly inhibited nitric oxide-induced cell death and dedifferentiation, and regulated extracellular regulated kinases 1 and 2 and p38 kinase in rabbit articular chondrocytes.

Keywords

References

  1. Hadjigogos, K. (2003) The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med., 45, 7-13.
  2. Harris, E.D., Jr., Faulkner, C.S., 2nd and Brown, F.E. (1975) Collagenolytic systems in rheumatoid arthritis. Clin. Orthop. Relat. Res., (110), 303-316.
  3. Dai, S.M., Shan, Z.Z., Xu, H. and Nishioka, K. (2007) Cellular targets of interleukin-18 in rheumatoid arthritis. Ann. Rheum. Dis., 66, 1411-1418. https://doi.org/10.1136/ard.2006.067793
  4. Otero, M. and Goldring, M.B. (2007) Cells of the synovium in rheumatoid arthritis. Arthritis Res. Ther., 9, 220. https://doi.org/10.1186/ar2292
  5. Scott, D.L., Wolfe, F. and Huizinga, T.W. (2010) Rheumatoid arthritis. Lancet, 376, 1094-1108. https://doi.org/10.1016/S0140-6736(10)60826-4
  6. Abramson, S.B. and Amin, A. (2002) Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology (Oxford), 41, 972-980. https://doi.org/10.1093/rheumatology/41.9.972
  7. Carrillo Gutierrez, O.Y., Perez Sanchez, A.G., Medina Serriteno, N. and Rodriguez Orozco, A.R. (2007) Side effects of COX-2 selective inhibitors. Critic related with its administration in patients with rheumatoid arthritis and osteoarthritis. Rev. Alerg. Mex., 54, 116-122.
  8. Chen, Y.F., Jobanputra, P., Barton, P., Bryan, S., Fry-Smith, A., Harris, G. and Taylor, R.S. (2008) Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation. Health Technol. Assess., 12, 1-278.
  9. Shiozawa, S. and Tokuhisa, T. (1992) Contribution of synovial mesenchymal cells to the pathogenesis of rheumatoid arthritis. Semin. Arthritis Rheum., 21, 267-273. https://doi.org/10.1016/0049-0172(92)90058-L
  10. Tutuncu, Z. and Kavanaugh, A. (2007) Rheumatic disease in the elderly: rheumatoid arthritis. Rheum. Dis. Clin. North Am., 33, 57-70. https://doi.org/10.1016/j.rdc.2006.12.006
  11. Vergunst, C.E., van de Sande, M.G., Lebre, M.C. and Tak, P.P. (2005) The role of chemokines in rheumatoid arthritis and osteoarthritis. Scand. J. Rheumatol., 34, 415-425. https://doi.org/10.1080/03009740500439159
  12. Combe, B. (1998) Inflammation and joint destruction during rheumatoid polyarthritis: what relation? Presse Med., 27, 481-483.
  13. Hauselmann, H.J. (1997) Mechanisms of cartilage destruction and novel nonsurgical therapeutic strategies to retard cartilage injury in rheumatoid arthritis. Curr. Opin. Rheumatol., 9, 241-250. https://doi.org/10.1097/00002281-199705000-00011
  14. Meyer, O, (2000) Role of anti-TNF therapy in rheumatoid arthritis. Presse Med., 29, 463-468.
  15. Reines, B.P. (2004) Is rheumatoid arthritis premature osteoarthritis with fetal-like healing? Autoimmun. Rev., 3, 305-311. https://doi.org/10.1016/j.autrev.2003.11.002
  16. Kastrinaki, M.C. and Papadaki, H.A. (2009) Mesenchymal stromal cells in rheumatoid arthritis: biological properties and clinical applications. Curr. Stem Cell Res. Ther., 4, 61-69. https://doi.org/10.2174/157488809787169084
  17. Lombardi, A., Pignone, A., Perfetto, F., Tarquini, R., Partsch, G. and Matucci-Cerinic, M. (1993) The enzymatic mechanisms involved in the pathogenesis of rheumatoid arthritis and arthrosis. The role of metalloproteases and serine proteases in the breakdown of articular cartilage. Recenti Prog. Med., 84, 634-641.
  18. Shiozawa, S. and Shiozawa, K. (1988) A review of the histopathological evidence on the pathogenesis of cartilage destruction in rheumatoid arthritis. Scand. J. Rheumatol. Suppl., 74, 65-72.
  19. Bouffi, C., Djouad, F., Mathieu, M., Noel, D. and Jorgensen, C. (2009) Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford), 48, 1185-1189. https://doi.org/10.1093/rheumatology/kep162
  20. Magliano, M. (2008) Obesity and arthritis. Menopause Int., 14, 149-154. https://doi.org/10.1258/mi.2008.008018
  21. Amin, A.R. and Abramson, S.B. (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr. Opin. Rheumatol., 10, 263-268. https://doi.org/10.1097/00002281-199805000-00018
  22. Martel-Pelletier, J., Alaaeddine, N. and Pelletier. J.P. (1999) Cytokines and their role in the pathophysiology of osteoarthritis. Front. Biosci., 4, D694-D703. https://doi.org/10.2741/A387
  23. Blanco, F.J., Guitian, R., Vazquez-Martul, E., de Toro, F.J. and Galdo, F. (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum., 41, 284-289. https://doi.org/10.1002/1529-0131(199802)41:2<284::AID-ART12>3.0.CO;2-T
  24. Hashimoto, S., Ochs, R.L., Komiya, S. and Lotz, M. (1998) Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum., 41, 1632-1638. https://doi.org/10.1002/1529-0131(199809)41:9<1632::AID-ART14>3.0.CO;2-A
  25. Yatsugi, N., Tsukazaki, T., Osaki, M., Koji, T., Yamashita, S. and Shindo, H. (2000) Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J. Orthop. Sci., 5, 150-156. https://doi.org/10.1007/s007760050142
  26. Cao, M., Westerhausen-Larson, A., Niyibizi, C., Kavalkovich, K., Georgescu, H.I., Rizzo, C.F., Hebda, P.A., Stefanovic-Racic, M. and Evans, C.H. (1997) Nitric oxide inhibits the synthesis of type-II collagen without altering Col2A1 mRNA abundance: prolyl hydroxylase as a possible target. Biochem. J., 324, 305-310. https://doi.org/10.1042/bj3240305
  27. Taskiran, D., Stefanovic-Racic, M., Georgescu, H. and Evans, C. (1994) Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem. Biophys. Res. Commun., 200, 142-148. https://doi.org/10.1006/bbrc.1994.1426
  28. Kim, S.J., Hwang, S.G., Shin, D.Y., Kang, S.S. and Chun, J.S. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NF${\kappa}$B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem., 277, 33501-33508. https://doi.org/10.1074/jbc.M202862200
  29. Kim, S.J., Ju, J.W., Oh, C.D., Yoon, Y.M., Song, W.K., Kim, J.H., Yoo, Y.J., Bang, O.S., Kang, S.S. and Chun, J.S. (2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxideinduced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem., 277, 1332-1339. https://doi.org/10.1074/jbc.M107231200
  30. Kim, S.J., Kim, H.G., Oh, C.D., Hwang, S.G., Song, W.K., Yoo, Y.J., Kang, S.S. and Chun, J.S. (2002) p38 kinase-dependent and -independent Inhibition of protein kinase C ${\zeta}$ and -${\alpha}$ regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem., 277, 30375-30381. https://doi.org/10.1074/jbc.M205193200
  31. Klotz, U. (1985) Clinical efficacy of oral 5-aminosalicylic acid in the treatment of inflammatory bowel disease. Am. J. Gastroenterol., 80, 660.
  32. Peppercorn, M.A. (1984) Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med., 101, 377-386. https://doi.org/10.7326/0003-4819-101-3-377
  33. Astbury, C., Taggart, A.J., Juby, L., Zebouni, L. and Bird, H.A. (1990) Comparison of the single dose pharmacokinetics of sulphasalazine in rheumatoid arthritis and inflammatory bowel disease. Ann. Rheum. Dis., 49, 587-590. https://doi.org/10.1136/ard.49.8.587
  34. Plosker, G.L. and Croom, K.F. (2005) Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs, 65, 1825-1849. https://doi.org/10.2165/00003495-200565130-00008
  35. Azadkhan, A.K., Truelove, S.C. and Aronson, J.K. (1982) The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br. J. Clin. Pharmacol., 13, 523-528. https://doi.org/10.1111/j.1365-2125.1982.tb01415.x
  36. Klotz, U. and Schwab, M. (2005) Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv. Drug Deliv. Rev., 57, 267-279. https://doi.org/10.1016/j.addr.2004.08.007
  37. Friedman, G. (1986) Sulfasalazine and new analogues. Am. J. Gastroenterol., 81, 141-144.
  38. Klotz, U. (1985) Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin. Pharmacokinet., 10, 285-302. https://doi.org/10.2165/00003088-198510040-00001
  39. van Hees, P.A., Bakker, J.H. and van Tongeren, J.H. (1980) Effect of sulphapyridine, 5-aminosalicylic acid, and placebo in patients with idiopathic proctitis: a study to determine the active therapeutic moiety of sulphasalazine. Gut., 21, 632-635. https://doi.org/10.1136/gut.21.7.632
  40. Yazdanian, M., Glynn, S.L., Wright, J.L. and Hawi, A. (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res., 15, 1490-1494. https://doi.org/10.1023/A:1011930411574
  41. Yoon, Y.M., Kim, S.J., Oh, C.D., Ju, J.W., Song, W.K., Yoo, Y.J., Huh, T.L. and Chun, J.S. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem., 277, 8412-8420. https://doi.org/10.1074/jbc.M110608200
  42. Ryu, J.H., Kim, S.J., Kim, S.H., Oh, C.D., Hwang, S.G., Chun, C.H., Oh, S.H., Seong, J.K., Huh, T.L. and Chun, J.S. (2002) Regulation of the chondrocyte phenotype by ${\beta}$-catenin. Development, 129, 5541-5550. https://doi.org/10.1242/dev.00110
  43. Poole, A.R. (2003) Cartilage in health and disease in Arthritis and Allied Conditions (McCarthy, D.J. and Koopman, W.J. Ed.) Lea and Febiger, Philadelphia, pp. 279-333.
  44. Goldring, M.B., Birkhead, J., Sandell, L.J., Kimura, T. and Krane, S.M. (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J. Clin. Invest., 82, 2026-2037. https://doi.org/10.1172/JCI113823
  45. Benya, P.D., Padilla, S.R. and Nimni, M.E. (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15, 1313-1321. https://doi.org/10.1016/0092-8674(78)90056-9
  46. Gay, S., Gay, R.E. and Koopman, W.J. (1993) Molecular and cellular mechanisms of joint destruction in rheumatoid arthritis: two cellular mechanisms explain joint destruction? Ann. Rheum. Dis., 52, S39-S47. https://doi.org/10.1136/ard.52.Suppl_1.S39
  47. Sandell, L.J. and Aigner, T. (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res., 3, 107-113. https://doi.org/10.1186/ar148
  48. Myers, L.K., Kang, A.H., Postlethwaite, A.E., Rosloniec, E.F., Morham, S.G., Shlopov, B.V., Goorha, S. and Ballou, L.R. (2000) The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum., 43, 2687-2693. https://doi.org/10.1002/1529-0131(200012)43:12<2687::AID-ANR8>3.0.CO;2-9
  49. Oh, C.D., Chang, S.H., Yoon, Y.M., Lee, S.J., Lee, Y.S., Kang, S.S. and Chun, J.S. (2000) Opposing role of mitogenactivated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem., 275, 5613-5619. https://doi.org/10.1074/jbc.275.8.5613

Cited by

  1. Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells vol.37, pp.4, 2017, https://doi.org/10.3892/or.2017.5441