References
- Abolbashari, M.H. and Nazari, F. (2014), "A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network", Struct. Eng. Mech., 51(2), 299-313. https://doi.org/10.12989/sem.2014.51.2.299
- Atkinson, C. and List, R. (1978), "Steady state crack propagation into media with spatially varying elastic properties", Int. J. Eng. Sci., 16(10), 717-730. https://doi.org/10.1016/0020-7225(78)90006-X
- Bhardwaj, G., Singh, I., Mishra, B. and Bui, T. (2015), "Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions", Compos. Struct., 126, 347-359. https://doi.org/10.1016/j.compstruct.2015.02.066
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
- Dag, S. (2007), "Mixed-mode fracture analysis of functionally graded materials under thermal stresses: a new approach using J_k-integral", J. Therm. Stress., 30(3), 269-296. https://doi.org/10.1080/01495730601130943
- Dag, S., Yildirim, B. and Erdogan, F. (2004), "Interface crack problems in graded orthotropic media: Analytical and computational approaches", Int. J. Fract., 130(1), 471-496. https://doi.org/10.1023/B:FRAC.0000049497.81105.c4
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
- Eischen, J. (1987), "An improved method for computing the J2 integral", Eng. Fract. Mech., 26(5), 691-700. https://doi.org/10.1016/0013-7944(87)90134-2
- Eshraghi, I. and Soltani, N. (2015), "Stress intensity factor calculation for internal circumferential cracks in functionally graded cylinders using the weight function approach", Eng. Fract. Mech., 134, 1-19. https://doi.org/10.1016/j.engfracmech.2014.12.007
- Gu, P., Dao, M. and Asaro, R. (1999), "A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral", J. Appl. Mech., 66(1), 101-108. https://doi.org/10.1115/1.2789135
- Guo, L.C. and Noda, N. (2007), "Modeling method for a crack problem of functionally graded materials with arbitrary properties-piecewise-exponential model", Int. J. Solid. Struct., 44(21), 6768-6790. https://doi.org/10.1016/j.ijsolstr.2007.03.012
- Kim, J.H. and Paulino, G.H. (2002), "Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method", Eng. Fract. Mech., 69(14), 1557-1586. https://doi.org/10.1016/S0013-7944(02)00057-7
- Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Noda, N. (1991), "Thermal stresses in materials with temperature-dependent properties", Appl. Mech. Rev., 44(9), 383-397. https://doi.org/10.1115/1.3119511
- Noda, N. (2002), Thermal Stresses, CRC Press, New York, NY, USA.
- Ootao, Y. and Ishihara, M. (2013), "Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law", Struct. Eng. Mech., 47(3), 421-442. https://doi.org/10.12989/sem.2013.47.3.421
- Petrova, V. and Sadowski, T. (2014), "Theoretical modeling and analysis of thermal fracture of semi-infinite functionally graded materials with edge cracks", Meccanica, 49(11), 2603-2615. https://doi.org/10.1007/s11012-014-9941-x
- Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165
- Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35(2), 379-386. https://doi.org/10.1115/1.3601206
- Sumi, N. and Sugano, Y. (1997), "Thermally induced stress waves in functionally graded materials with temperature-dependent material properties", J. Therm. Stress., 20(3-4), 281-294. https://doi.org/10.1080/01495739708956103
- Touloukian, Y. S., (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, London, England.
- Yildirim, B. and Erdogan, F. (2004), "Edge crack problems in homogenous and functionally graded material thermal barrier coatings under uniform thermal loading", J. Therm. Stress., 27(4), 311-329. https://doi.org/10.1080/01495730490427564
- Yu, H. and Kitamura, T. (2015), "A new domain-independent interaction integral for solving the stress intensity factors of the materials with complex thermo-mechanical interfaces", Eur. J. Mech. A/Solid., 49, 500-509. https://doi.org/10.1016/j.euromechsol.2014.09.007
Cited by
- Fracture Performance of Type 304 Stainless Steel Reinforcement Belt from Cryogenic to Elevated Temperatures vol.41, pp.6, 2017, https://doi.org/10.1007/s40799-017-0205-2
- Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.263
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- The discrete element method simulation and experimental study of determining the mode I stress-intensity factor vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.379
- Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.601
- Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane vol.72, pp.6, 2016, https://doi.org/10.12989/sem.2019.72.6.775
- Relationship between point load index and mode II fracture toughness of granite vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.025