DOI QR코드

DOI QR Code

Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. I. Applied Voltage and Time

PEO 처리조건에 따른 마그네슘 합금 AZ31과 AZ91의 산화표면피막특성에 대한 연구. I. 전압과 시간의 영향

  • Ham, Jae-Ho (Department of Materials Sci. and Eng., Incheon Natational University) ;
  • Jeon, Min-Seok (Material & Components Technology Center, Korea Testing Laboratory) ;
  • Kim, Yong-Nam (Material & Components Technology Center, Korea Testing Laboratory) ;
  • Shin, Min Chul (Material & Components Technology Center, Korea Testing Laboratory) ;
  • Kim, Kwang Youp (MST Technology) ;
  • Kim, Bae-Yeon (Department of Materials Sci. and Eng., Incheon Natational University)
  • Received : 2016.03.10
  • Accepted : 2016.03.16
  • Published : 2016.04.01

Abstract

The surface of Mg alloy, AZ31 and AZ91, were treated by PEO (plasma electrolytic oxidation) in Na-P system electrolyte, with different applied voltage and time. Thickness, roughness and X-ray crystallographic analysis revealed several results. The more applied time and voltage of PEO treated, the thicker oxidized surface coating layer were covered. And surface roughness increased with the thickness of oxidized layer. It was thought that when oxide layer grew, resistivity and breakdown voltage increased with the thickness of layer, and then, the energy of micro plasma need to be higher then before. So, it made craters and pores of surface become greater, which were responsible for the coarse surface.

Keywords

References

  1. B. L. Mordike and T. Ebert, Materials Science and Engineering, A302, 37 (2001). [DOI: http://dx.doi.org/10.1016/S0921-5093(00)01351-4]
  2. G. L. Song and A. Atrens, Advanced Engineering Materials, 1002, 1 (1999).
  3. H. F. Guo, and M. Z. An, Thin Solid Films, 500, 186 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.11.045]
  4. Y. Ma, X. Nie, D. O. Northwood, and H. Hu, Thin Solid Films, 494, 296 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.08.156]
  5. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coating Technology, 122, 73 (1999). [DOI: http://dx.doi.org/10.1016/S0257-8972(99)00441-7]
  6. H. F. Guo, and M. Z. An, Applied Surface Science., 246, 229 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.11.031]
  7. H. F. Guo, M. Z. An, S. Xu, H. Huo, Thin Solid Films, 485, 53 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.03.050]
  8. H. F. Guo and M. Z. An, Applied Surface Science, 246, 229 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.11.031]
  9. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G. E Thompson, Corrosion Science, 50, 1744 (2008). [DOI: http://dx.doi.org/10.1016/j.corsci.2008.03.002]
  10. A. V. Timoshenko and Y. V. Magurova, Surface and Coatings Technology, 199, 135 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.09.036]
  11. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Applied Surface Science, 252, 345 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.01.007]
  12. Q. Cai, L. Wang, B. Wei, and Q. Liu,, Surface and Coatings Technology, 200, 3727 (2006). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2005.05.039]
  13. H. Y. Hsiao, H. C. Tsung, and W. T. Tsai, Surface and Coatings Technology, 199, 127 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.12.010]
  14. S. Verdier, M. Boinet, S. Maximovitch, and F. Dalard, Corrosion. Science., 47, 1427 (2005). [DOI: http://dx.doi.org/10.1016/j.corsci.2004.07.038]
  15. Y. G. Ko, E. S. Lee, and D. H. Shin, Journal of Alloys and Compounds, 586, S357 (2014). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.03.015]
  16. Y. Ma, H. Hu, D. Northwood, and X. Nie, Journal of Materials Processing Technology, 182, 58 (2007). [DOI: http://dx.doi.org/10.1016/j.jmatprotec.2006.07.007]
  17. H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Applied Surface Science, 252, 7911 (2006). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.09.067]