References
- Anders, J.M. and Haarmeyer, J. (2010), "A parametric blade design system", von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.
- Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A. and Tesini, P. (2012), "On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations", J. Comput. Phys., 231(1), 45-65. https://doi.org/10.1016/j.jcp.2011.08.018
- Bassi, F., Crivellini, A., Rebay, S. and Savini, M. (2005), "Discontinuous Galerkin solution of the Reynoldsaveraged Navier-Stokes and k-omega turbulence model equations", Comput. Fluid., 34, 507-540. https://doi.org/10.1016/j.compfluid.2003.08.004
- Bertini, F., Dal Mas, L., Vassio, L. and Ampellio, E. (2013), "Multidisciplinary optimization for gas turbines design", XXII AIDAA Conference, Naples, Italy, September.
- Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999), Swarm Intelligence: From Natural To Artificial Systems, Oxford University Press, New York, NY, USA.
- Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, Cambridge, UK.
- Binitha, S. and Siva Sathya, S. (2012), "A survey of bio inspired optimization algorithms", Int. J. Soft Comput. Eng., 2(2), 137-151.
- Bolaji, A., Khader, A., Al-Betar, M. and Awadallah, M. (2013), "Artificial Bee Colony Algorithm, its variants and applications: a survey", J. Theor. Appl. Inform. Technol., 47(2), 434-459.
- Colombo, A. (2011), "An agglomeration-based discontinuous Galerkin method for compressible flows", PhD Thesis, University of Bergamo, Italy.
- Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, NY, USA.
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multi-objective genetic algorithm: NSGA-II", IEEE T. Evol. Comput., 6(2),182-197. https://doi.org/10.1109/4235.996017
- Ferrero, A. and Larocca, F. (2013), "Test cases C1.1, C1.2 and C1.6", Second International Workshop on High-Order CFD Methods, Cologne, Germany, http://www.dlr.de/as/hiocfd.
- Ferrero, A. and Larocca, F. (2015), "Test cases C1.2 and C1.3", Third International Workshop on High-Order CFD Methods, Orlando, Florida, USA, January, https://www.grc.nasa.gov/hiocfd/.
- Ferrero, A., Larocca, F. and Puppo, G. (2015), "A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection-diffusion equations", J. Numer. Meth. Fluid., 77(2), 63-91. https://doi.org/10.1002/fld.3972
- Forrester, A., Sobester, A. and Keane, A. (2008), Engineering Design Via Surrogate Modelling: A Practical Guide, John Wiley & Sons, UK.
- Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities", Int. J. Numer. Meth. Eng., 79(11), 1309-1331. https://doi.org/10.1002/nme.2579
- Glover, F. and Kochenberger, G.A. (2003), Handbook of Metaheuristics, International Series in Operations Research & Management Science, Springer, US.
- Hillewaert, K., Carton de Wiart, C. and Arts, T. (2013), "Test cases C3.7", Second International Workshop on High-Order CFD Methods, Cologne, May, http://www.dlr.de/as/hiocfd.
- Iollo, A., Ferlauto, M. and Zannetti, L. (2001), "An Aerodynamic Optimization Method based on the Inverse Problem Adjoint Equations", J. Comput. Phys., 173(1), 87-115. https://doi.org/10.1006/jcph.2001.6845
- Jones, D.R. (2001), "A taxonomy of global optimization methods based on response surfaces", J. Global Opti., 21(4), 345-383. https://doi.org/10.1023/A:1012771025575
- Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report TR06, Erciyes University, Turkey.
- Karaboga, D. (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J. Global Opti., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x
- Karaboga, D. and Akay, B. (2009), "A comparative study of artificial bee colony algorithm", Appl. Math. Comput., 214(1),108-132. https://doi.org/10.1016/j.amc.2009.03.090
- Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014), "A comprehensive survey: artificial bee colony (ABC) algorithm and applications", Artif. Intell. Rev., 42(1), 21-57. https://doi.org/10.1007/s10462-012-9328-0
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks IV, 1942-1948.
- Kennedy, J. (2010), Encyclopedia of Machine Learning: Particle Swarm Optimization, Springer, New York, USA.
- Koiro, M.J., Myers, R.A. and Delaney, R.A. (1999), TADS-A CFD-Based Turbomachinery Analysis and Design System With GUI. NASA contract report CR-1999-206603.
- Koziel, S. and Yang, X.S. (2011), Computational Optimization, Methods and Algorithms, Springer-Verlag, Berlin, Germany.
- Koziel, S. and Leifsson, L. (2013), Surrogate-Based Modeling and Optimization: Applications in Engineering, Springer, New York, USA.
- Larocca, F. (2008), "Multiple objective optimization and inverse design of axial turbomachinery blades", J. Prop. Power, 24(5), 1093-1099. https://doi.org/10.2514/1.33894
- McCullagh, P. and Nelder, J. (1989), Generalized Linear Models, Second Edition, Chapman and Hall/CRC, Boca Raton, Florida, USA.
- Martins, J.R.R.A., Alonso, J.J. and Reuthes, J.J. (2005), "A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design", Optim. Eng., 6(1), 33-6. https://doi.org/10.1023/B:OPTE.0000048536.47956.62
- Martins, J.R.R.A. and Lambe, A.B. (2013), "Multidisciplinary design optimization: a survey of architectures", AIAA J., 51(9), 2049-2075. https://doi.org/10.2514/1.J051895
- Michalek, J., Monaldi, M. and Arts, T. (2010), "Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity", J. Turbomach., 134(6), 061009. https://doi.org/10.1115/1.4006291
- Onate, E. (2009), Structural Analysis with the Finite Element Method: Linear Statics, Volume 1: Basis and Solids, Springer, Berlin, Germany.
- Pacciani, R., Marconcini, M., Arnone, A. and Bertini, F. (2011), "An assessment of the laminar kinetic energy concept for the prediction of high-lift, low-Reynolds number cascade flows", Proc. Inst. Mech. Eng. A J. Power Energy, 225, 995-1003. https://doi.org/10.1177/0957650911412444
- Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22(5), 602-610. https://doi.org/10.2514/3.48491
- Panigrahi, B.K., Shi, Y. and Lim, M.H. (2011), Handbook of Swarm Intelligence, Springer-Verlag, Berlin, Germany.
- Rao, S.S. (2009), Engineering Optimization: Theory and Practice, John Wiley & Sons, Hoboken, New Jersey, USA.
- Schabowski, Z., Hodson, H., Giacche, D., Power, B. and Stokes, M.R. (2010), "Aeromechanical optimisation of a winglet-squealer tip for an axial turbine", ASME Turbo Expo 2010, Glasgow, June.
- Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, USA.
- Talbi, E.G. (2009), Metaheuristics: from design to implementation, John Wiley & Sons, Hoboken, New Jersey, USA.
- Toffolo, A. and Benini, E. (2003), "Genetic diversity as an objective in multi-objective evolutionary algorithms", Evol. Comput., 11(2), 151-167. https://doi.org/10.1162/106365603766646816
- Tizhoosh, H. (2005), "Opposition-based learning: a new scheme for machine intelligence", Proceedings of international Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, November.
- Vanderplaats, G.N. (2007), Multidiscipline Design Optimization, Vanderplaatz R&D, Inc., Colorado Springs, Colorado, USA.
- Vestraete, T. and Periaux, J. (2012), Introduction to optimization and multidisciplinary design in Aeronautics and Turbomachinery, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.
- Wilcox, D.C. (1998), Turbulence Modeling for CFD, 2nd edition, DCW Industries, La Canada, Canada.
- Wilson, D.G. (1991), The design of high-efficiency turbomachinery and gas turbines, MIT press, Cambridge, Massachusetts, USA.
- Yang, X.S. (2010), Nature-Inspired Metaheuristic Algorithms, Second Edition, Luniver Press, Frome, United Kingdom.
Cited by
- Plasma Actuator-Assisted Rocket Nozzle for Improved Launcher Performance vol.57, pp.4, 2016, https://doi.org/10.2514/1.j057956
- Reduced order modelling for turbomachinery shape design vol.34, pp.2, 2016, https://doi.org/10.1080/10618562.2019.1691722
- Control of a Supersonic Inlet in Off-Design Conditions with Plasma Actuators and Bleed vol.7, pp.3, 2016, https://doi.org/10.3390/aerospace7030032
- A hybrid numerical flux for supersonic flows with application to rocket nozzles vol.7, pp.5, 2020, https://doi.org/10.12989/aas.2020.7.5.387
- Numerical investigation for performance prediction of gas dynamic resonant igniters vol.7, pp.5, 2016, https://doi.org/10.12989/aas.2020.7.5.425