DOI QR코드

DOI QR Code

Turbomachinery design by a swarm-based optimization method coupled with a CFD solver

  • Ampellio, Enrico (Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Bertini, Francesco (GE Avio S.r.l.) ;
  • Ferrero, Andrea (Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Larocca, Francesco (Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Vassio, Luca (Department of Electronics and Telecommunications, Politecnico di Torino)
  • Received : 2015.07.02
  • Accepted : 2015.09.24
  • Published : 2016.04.25

Abstract

Multi-Disciplinary Optimization (MDO) is widely used to handle the advanced design in several engineering applications. Such applications are commonly simulation-based, in order to capture the physics of the phenomena under study. This framework demands fast optimization algorithms as well as trustworthy numerical analyses, and a synergic integration between the two is required to obtain an efficient design process. In order to meet these needs, an adaptive Computational Fluid Dynamics (CFD) solver and a fast optimization algorithm have been developed and combined by the authors. The CFD solver is based on a high-order discontinuous Galerkin discretization while the optimization algorithm is a high-performance version of the Artificial Bee Colony method. In this work, they are used to address a typical aero-mechanical problem encountered in turbomachinery design. Interesting achievements in the considered test case are illustrated, highlighting the potential applicability of the proposed approach to other engineering problems.

Keywords

References

  1. Anders, J.M. and Haarmeyer, J. (2010), "A parametric blade design system", von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.
  2. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A. and Tesini, P. (2012), "On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations", J. Comput. Phys., 231(1), 45-65. https://doi.org/10.1016/j.jcp.2011.08.018
  3. Bassi, F., Crivellini, A., Rebay, S. and Savini, M. (2005), "Discontinuous Galerkin solution of the Reynoldsaveraged Navier-Stokes and k-omega turbulence model equations", Comput. Fluid., 34, 507-540. https://doi.org/10.1016/j.compfluid.2003.08.004
  4. Bertini, F., Dal Mas, L., Vassio, L. and Ampellio, E. (2013), "Multidisciplinary optimization for gas turbines design", XXII AIDAA Conference, Naples, Italy, September.
  5. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999), Swarm Intelligence: From Natural To Artificial Systems, Oxford University Press, New York, NY, USA.
  6. Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, Cambridge, UK.
  7. Binitha, S. and Siva Sathya, S. (2012), "A survey of bio inspired optimization algorithms", Int. J. Soft Comput. Eng., 2(2), 137-151.
  8. Bolaji, A., Khader, A., Al-Betar, M. and Awadallah, M. (2013), "Artificial Bee Colony Algorithm, its variants and applications: a survey", J. Theor. Appl. Inform. Technol., 47(2), 434-459.
  9. Colombo, A. (2011), "An agglomeration-based discontinuous Galerkin method for compressible flows", PhD Thesis, University of Bergamo, Italy.
  10. Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, NY, USA.
  11. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multi-objective genetic algorithm: NSGA-II", IEEE T. Evol. Comput., 6(2),182-197. https://doi.org/10.1109/4235.996017
  12. Ferrero, A. and Larocca, F. (2013), "Test cases C1.1, C1.2 and C1.6", Second International Workshop on High-Order CFD Methods, Cologne, Germany, http://www.dlr.de/as/hiocfd.
  13. Ferrero, A. and Larocca, F. (2015), "Test cases C1.2 and C1.3", Third International Workshop on High-Order CFD Methods, Orlando, Florida, USA, January, https://www.grc.nasa.gov/hiocfd/.
  14. Ferrero, A., Larocca, F. and Puppo, G. (2015), "A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection-diffusion equations", J. Numer. Meth. Fluid., 77(2), 63-91. https://doi.org/10.1002/fld.3972
  15. Forrester, A., Sobester, A. and Keane, A. (2008), Engineering Design Via Surrogate Modelling: A Practical Guide, John Wiley & Sons, UK.
  16. Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities", Int. J. Numer. Meth. Eng., 79(11), 1309-1331. https://doi.org/10.1002/nme.2579
  17. Glover, F. and Kochenberger, G.A. (2003), Handbook of Metaheuristics, International Series in Operations Research & Management Science, Springer, US.
  18. Hillewaert, K., Carton de Wiart, C. and Arts, T. (2013), "Test cases C3.7", Second International Workshop on High-Order CFD Methods, Cologne, May, http://www.dlr.de/as/hiocfd.
  19. Iollo, A., Ferlauto, M. and Zannetti, L. (2001), "An Aerodynamic Optimization Method based on the Inverse Problem Adjoint Equations", J. Comput. Phys., 173(1), 87-115. https://doi.org/10.1006/jcph.2001.6845
  20. Jones, D.R. (2001), "A taxonomy of global optimization methods based on response surfaces", J. Global Opti., 21(4), 345-383. https://doi.org/10.1023/A:1012771025575
  21. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report TR06, Erciyes University, Turkey.
  22. Karaboga, D. (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J. Global Opti., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x
  23. Karaboga, D. and Akay, B. (2009), "A comparative study of artificial bee colony algorithm", Appl. Math. Comput., 214(1),108-132. https://doi.org/10.1016/j.amc.2009.03.090
  24. Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014), "A comprehensive survey: artificial bee colony (ABC) algorithm and applications", Artif. Intell. Rev., 42(1), 21-57. https://doi.org/10.1007/s10462-012-9328-0
  25. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks IV, 1942-1948.
  26. Kennedy, J. (2010), Encyclopedia of Machine Learning: Particle Swarm Optimization, Springer, New York, USA.
  27. Koiro, M.J., Myers, R.A. and Delaney, R.A. (1999), TADS-A CFD-Based Turbomachinery Analysis and Design System With GUI. NASA contract report CR-1999-206603.
  28. Koziel, S. and Yang, X.S. (2011), Computational Optimization, Methods and Algorithms, Springer-Verlag, Berlin, Germany.
  29. Koziel, S. and Leifsson, L. (2013), Surrogate-Based Modeling and Optimization: Applications in Engineering, Springer, New York, USA.
  30. Larocca, F. (2008), "Multiple objective optimization and inverse design of axial turbomachinery blades", J. Prop. Power, 24(5), 1093-1099. https://doi.org/10.2514/1.33894
  31. McCullagh, P. and Nelder, J. (1989), Generalized Linear Models, Second Edition, Chapman and Hall/CRC, Boca Raton, Florida, USA.
  32. Martins, J.R.R.A., Alonso, J.J. and Reuthes, J.J. (2005), "A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design", Optim. Eng., 6(1), 33-6. https://doi.org/10.1023/B:OPTE.0000048536.47956.62
  33. Martins, J.R.R.A. and Lambe, A.B. (2013), "Multidisciplinary design optimization: a survey of architectures", AIAA J., 51(9), 2049-2075. https://doi.org/10.2514/1.J051895
  34. Michalek, J., Monaldi, M. and Arts, T. (2010), "Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity", J. Turbomach., 134(6), 061009. https://doi.org/10.1115/1.4006291
  35. Onate, E. (2009), Structural Analysis with the Finite Element Method: Linear Statics, Volume 1: Basis and Solids, Springer, Berlin, Germany.
  36. Pacciani, R., Marconcini, M., Arnone, A. and Bertini, F. (2011), "An assessment of the laminar kinetic energy concept for the prediction of high-lift, low-Reynolds number cascade flows", Proc. Inst. Mech. Eng. A J. Power Energy, 225, 995-1003. https://doi.org/10.1177/0957650911412444
  37. Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22(5), 602-610. https://doi.org/10.2514/3.48491
  38. Panigrahi, B.K., Shi, Y. and Lim, M.H. (2011), Handbook of Swarm Intelligence, Springer-Verlag, Berlin, Germany.
  39. Rao, S.S. (2009), Engineering Optimization: Theory and Practice, John Wiley & Sons, Hoboken, New Jersey, USA.
  40. Schabowski, Z., Hodson, H., Giacche, D., Power, B. and Stokes, M.R. (2010), "Aeromechanical optimisation of a winglet-squealer tip for an axial turbine", ASME Turbo Expo 2010, Glasgow, June.
  41. Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, USA.
  42. Talbi, E.G. (2009), Metaheuristics: from design to implementation, John Wiley & Sons, Hoboken, New Jersey, USA.
  43. Toffolo, A. and Benini, E. (2003), "Genetic diversity as an objective in multi-objective evolutionary algorithms", Evol. Comput., 11(2), 151-167. https://doi.org/10.1162/106365603766646816
  44. Tizhoosh, H. (2005), "Opposition-based learning: a new scheme for machine intelligence", Proceedings of international Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, November.
  45. Vanderplaats, G.N. (2007), Multidiscipline Design Optimization, Vanderplaatz R&D, Inc., Colorado Springs, Colorado, USA.
  46. Vestraete, T. and Periaux, J. (2012), Introduction to optimization and multidisciplinary design in Aeronautics and Turbomachinery, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.
  47. Wilcox, D.C. (1998), Turbulence Modeling for CFD, 2nd edition, DCW Industries, La Canada, Canada.
  48. Wilson, D.G. (1991), The design of high-efficiency turbomachinery and gas turbines, MIT press, Cambridge, Massachusetts, USA.
  49. Yang, X.S. (2010), Nature-Inspired Metaheuristic Algorithms, Second Edition, Luniver Press, Frome, United Kingdom.

Cited by

  1. Plasma Actuator-Assisted Rocket Nozzle for Improved Launcher Performance vol.57, pp.4, 2016, https://doi.org/10.2514/1.j057956
  2. Reduced order modelling for turbomachinery shape design vol.34, pp.2, 2016, https://doi.org/10.1080/10618562.2019.1691722
  3. Control of a Supersonic Inlet in Off-Design Conditions with Plasma Actuators and Bleed vol.7, pp.3, 2016, https://doi.org/10.3390/aerospace7030032
  4. A hybrid numerical flux for supersonic flows with application to rocket nozzles vol.7, pp.5, 2020, https://doi.org/10.12989/aas.2020.7.5.387
  5. Numerical investigation for performance prediction of gas dynamic resonant igniters vol.7, pp.5, 2016, https://doi.org/10.12989/aas.2020.7.5.425