DOI QR코드

DOI QR Code

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S. (Department of Civil Engineering, SRES's College of Engineering, Savitribai Phule Pune University) ;
  • Ghugal, Yuwaraj M. (Department of Applied Mechanics, Government Engineering College)
  • 투고 : 2015.06.08
  • 심사 : 2015.09.07
  • 발행 : 2016.04.25

초록

In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

키워드

참고문헌

  1. Afshin, M., Sadighi, M. and Shakeri, M. (2010), "Static analysis of cylindrical sandwich panels with a flexible core and laminated composite face sheets", J. Compos. Mater., 44, 1455-1476. https://doi.org/10.1177/0021998309359215
  2. Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and anti-symmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26, 1907-1 919. https://doi.org/10.1177/0731684407081766
  3. Alibeigloo, A. and Shakeri, M. (2009), "Elasticity solution for static analysis of laminated cylindrical panel using differential quadrature method", Eng. Struct., 31, 260-267. https://doi.org/10.1016/j.engstruct.2008.08.012
  4. Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech Nauk SSSR, 5, 69-77.
  5. Auricchio, F. and Sacco, E. (2003), "Refined first-order shear deformation theory models for composite laminates", J. Appl. Mech., 70, 381-390. https://doi.org/10.1115/1.1572901
  6. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  7. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  8. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
  9. Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons Inc., New York.
  10. Carrera, E. (1999a), "A study of transverse normal stress effect on vibration of multilayered plates and shells", J. Sound Vib., 225(5), 803-829. https://doi.org/10.1006/jsvi.1999.2271
  11. Carrera, E. (2002), "Theories and finite elements for multilayered anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
  12. Carrera, E. (2003), "Theories and finite elements for multilayered anisotropic, composite plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 216-296.
  13. Carrera, E. (2005), "Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates", AIAA J., 43(10), 2232-2242. https://doi.org/10.2514/1.11230
  14. Carrera, E. (1999b), "Transverse normal stress effects in multilayered plates", J. Appl. Mech., 66(4), 1004-1012. https://doi.org/10.1115/1.2791769
  15. Chen, W.Q. and Lee, K.Y. (2005), "State-space approach for statics and dynamics of angle-ply laminated cylindrical panels in cylindrical bending", Int. J. Mech. Sci., 47, 374-387. https://doi.org/10.1016/j.ijmecsci.2005.01.009
  16. Ghugal, Y.M. and Sayyad, A.S. (2011), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech., 5, 1-23.
  17. Ghugal, Y.M. and Sayyad, A.S. (2013), "Cylindrical bending of thick orthotropic plates using trigonometric shear deformation theory", Int. J. Appl. Math. Mech., 7(5), 98-116.
  18. Ghugal, Y.M. and Shinde, S.B. (2013), "Flexural analysis of cross-ply laminated beams using layerwise trigonometric shear deformation theory", Lat. Am. J. Solids Struct., 10, 675-705. https://doi.org/10.1590/S1679-78252013000400002
  19. Ghugal, Y.M. and Shinde, S.B. (2014), "Static flexure of thick cross-ply laminated beams using layerwise theory", Int. J. Appl. Math. Mech., 10(3), 15-31.
  20. He, J.F. (1992), "Cylindrical bending of arbitrary cross-ply laminated plates", Compos. Struct., 21, 67-74. https://doi.org/10.1016/0263-8223(92)90041-A
  21. Jalali, S.J. and Taheri, F. (1998), "An analytical solution for cross-ply laminates under cylindrical bending based on through-the-thickness inextensibility, Part I-static loading", Int. J. Solid. Struct., 35, 1559-1574. https://doi.org/10.1016/S0020-7683(97)00126-1
  22. Kant, T. and Shiyekar, S.M. (2008), "Cylindrical bending of piezoelectric laminates with a higher order shear and normal deformation theory", Comput. Struct., 86, 1594-1603. https://doi.org/10.1016/j.compstruc.2008.01.002
  23. Kapuria, S. and Kumari, P. (2011), "Extended Kantorovich method for three-dimensional elasticity solution of laminated composite structures in cylindrical bending", J. Appl. Mech., 78, 1-8.
  24. Karama, M., Afaq, S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40, 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  25. Khdeir, A.A. (2001), "Free and forced vibration of antisymmetric angle-ply laminated plate strips in cylindrical bending", J. Vib. Control, 7, 781-801. https://doi.org/10.1177/107754630100700602
  26. Kruszewski, E.T. (1949), "Effect of transverse shear and rotatory inertia on the natural frequency of a uniform beam", NACA Tech. Note No. 1909, Washington, D. C., USA.
  27. Lebee, A. and Sab, K. (2011), "A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates", Int. J. Solid. Struct., 48, 2889-2901. https://doi.org/10.1016/j.ijsolstr.2011.06.005
  28. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A higher order theory for plate deformations, Part 1: Homogeneous plates", J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154
  29. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A higher order theory for plate deformations, Part 2: Laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
  30. Lu, C.F., Huang, Z.Y. and Chen, W.Q. (2007), "Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending", J. Sound Vib., 304, 987-995. https://doi.org/10.1016/j.jsv.2007.03.023
  31. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solid. Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
  32. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
  33. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2011), "Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions", Mech. Res. Commun., 38, 368-371. https://doi.org/10.1016/j.mechrescom.2011.04.011
  34. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. B, 43, 711-725.
  35. Pagano, N.J. (1969), "Exact solution for composite laminates in cylindrical bending", J. Compos. Mater., 3, 398-411. https://doi.org/10.1177/002199836900300304
  36. Pagano, N.J. (1971), "Influence of shear coupling in cylindrical bending of anisotropic laminates", J. Compos. Mater., 4, 330-343.
  37. Pagano, N.J. and Wang, A.S.D. (1971), "Further study of composite laminates under cylindrical bending", J. Compos. Mater., 5, 521-528. https://doi.org/10.1177/002199837100500410
  38. Park, J. and Lee, S.Y. (2003), "A new exponential plate theory for laminated composites under cylindrical bending", Tran. Japan. Soc. Aero. Space Sci., 46(152), 89-95. https://doi.org/10.2322/tjsass.46.89
  39. Perel, V.Y. and Palazotto, A.N. (2001), "Finite element formulation for cylindrical bending of a transversely compressible sandwich plate based on assumed transverse strain", Int. J. Solid. Struct., 38, 5373-5409. https://doi.org/10.1016/S0020-7683(00)00293-6
  40. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  41. Saeedi, N., Sab, K. and Caron, J.F. (2013), "Cylindrical bending of multilayered plates with multidelamination via a layerwise stress approach", Compos. Struct., 95, 728-739. https://doi.org/10.1016/j.compstruct.2012.08.037
  42. Sayyad, A.S., Ghugal, Y.M. and Naik, N.S. (2015), "Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory", Cur. Layer. Struct., 2, 279-289.
  43. Sayyad, A.S., Ghumare, S.M. and Sasane, S.T. (2014), "Cylindrical bending of orthotropic plate strip based on n-th order plate theory", J. Mater. Eng. Struct., 1, 47-52.
  44. Sayyad, A.S. and Ghugal, Y.M. (2015a), "A nth-order shear deformation theory for composite laminates in cylindrical bending", Curv. Layer. Struct., 2, 290-300.
  45. Sayyad, A.S. and Ghugal, Y.M. (2013), "Effect of stress concentration on laminated plates", J. Mech., 29, 241-252. https://doi.org/10.1017/jmech.2012.131
  46. Sayyad, A.S. and Ghugal, Y.M. (2014a), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10, 247-267. https://doi.org/10.1007/s10999-014-9244-3
  47. Sayyad, A.S. and Ghugal, Y.M. (2014b), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stab. Dyn., 14, 1-32. https://doi.org/10.1007/s13296-014-1001-9
  48. Sayyad, A.S. and Ghugal, Y.M. (2015b), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
  49. Shimpi, R.P. and Ghugal, Y.M. (2001), "A new layerwise trigonometric shear deformation theory for twolayered cross-ply beams", Compos. Sci. Tech., 61, 1271-1283. https://doi.org/10.1016/S0266-3538(01)00024-0
  50. Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  51. Shimpi, R.P., Arya, H. and Naik, N.K. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Compos., 22, 1667-1688. https://doi.org/10.1177/073168403027618
  52. Shu, X.P. and Soldatos, K.P. (2000), "Cylindrical bending of angle-ply laminates subjected to different sets of edge boundary conditions", Int. J. Solid. Struct., 37, 4289-4307. https://doi.org/10.1016/S0020-7683(99)00144-4
  53. Soldatos, K.P. and Watson, P. (1997), "A method for improving the stress analysis performance of twodimensional theories for composite laminates", Acta Mech., 123, 163-186. https://doi.org/10.1007/BF01178408
  54. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-200. https://doi.org/10.1007/BF01176650
  55. Starovoytov, E.I., Dorovskaya, E.P. and Starovoytov, S.A. (2010), "Cylindrical bending of an elastic rectangular sandwich plate on a deformable foundation", Mech. Compos. Mater., 46(1), 57-68. https://doi.org/10.1007/s11029-010-9126-1
  56. Stein, M. (1986), "Nonlinear theory for plates and shells including effect of transverse shearing", AIAA J., 24, 1537-1544. https://doi.org/10.2514/3.9477
  57. Toledano, A. and Murakami, H. (1987a), "A Composite plate theory for arbitrary laminate configuration", J. Appl. Mech., 54, 181-189. https://doi.org/10.1115/1.3172955
  58. Toledano, A. and Murakami, H. (1987b), "A Higher order laminated plate theory with improved in-plane response", Int. J. Solid. Struct., 23, 111-131. https://doi.org/10.1016/0020-7683(87)90034-5
  59. Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
  60. Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 109, 675-697.
  61. Touratier, M. (), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916.
  62. Vel, S.S. and Batra, R.C. (2000), "Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors", AIAA J., 38(5), 857-867. https://doi.org/10.2514/2.1040
  63. Vel, S.S. and Batra, R.C. (2001), "Exact solution for the cylindrical bending of laminated plates with embedded piezoelectric shear actuators", Smart Mater. Struct., 10, 240-251. https://doi.org/10.1088/0964-1726/10/2/309
  64. Vel, S.S., Mewer, R.C. and Batra, R.C. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", Int. J. Solid. Struct., 41, 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012
  65. Wan, F.Y.M. (1992), "Cylindrical bending of thin plate", Int. J. Solid. Struct., 29, 547-557. https://doi.org/10.1016/0020-7683(92)90053-V
  66. Wu, C.P. and Syu, Y.S. (2007), "Exact solutions of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solid. Struct., 44, 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037
  67. Yang, J.S., Batra, R.C. and Liang, X.Q. (1994), "The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators", Smart Mater. Struct., 3, 485-493. https://doi.org/10.1088/0964-1726/3/4/011
  68. Zenkour, A.M. (2005), "On vibration of functionally graded plates according to a refined trigonometric plate theory", Int. J. Struct. Stab. Dyn., 5, 279-297. https://doi.org/10.1142/S0219455405001581
  69. Zenkour, A.M. (2007), "Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates", J. Sandw. Struct. Mater., 9, 213-238. https://doi.org/10.1177/1099636207065675
  70. Zhou, Y.Y., Chen, W.Q., Lu, C.F. and Wang, J. (2009), "Free vibration of cross-ply piezoelectric laminates in cylindrical bending with arbitrary edges", Compos. Struct., 87, 93-100. https://doi.org/10.1016/j.compstruct.2008.01.002

피인용 문헌

  1. 1D analysis of laminated composite and sandwich plates using a new fifth-order plate theory vol.15, pp.1, 2018, https://doi.org/10.1590/1679-78253973
  2. Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium vol.75, pp.1, 2016, https://doi.org/10.12989/sem.2020.75.1.109
  3. An Alternative Electro-Mechanical Finite Formulation for Functionally Graded Graphene-Reinforced Composite Beams with Macro-Fiber Composite Actuator vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247802