DOI QR코드

DOI QR Code

동중국과 한반도 경상분지의 백악기초기 화성활동의 성인 고찰

Petrogenesis of Early Cretaceous Magmatism in Eastern China and the Gyeongsang Basin, Korean Peninsula

  • 최성희 (충남대학교 자연과학대학 지질환경과학과)
  • Choi, Sung Hi (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2016.02.19
  • 심사 : 2016.03.17
  • 발행 : 2016.03.31

초록

동중국과 우리나라 경상분지에 분포하는 백악기초기 화성활동의 지구화학적 특징을 고찰하였다. 동중국에 분포하는 암상은 피크라이트-현무암-안산암-조면암-유문암 및 황반암의 분출암과 반려암-섬록암-몬조니암-섬장암-화강암 및 휘록암의 관입암체로 다양하다. 이들은 고-칼륨 칼크-알칼리 내지는 쇼쇼나이트 계열에 속한다. 경상분지의 하양층군 속에 협재되어 있는 화산암은 같은 계열의 현무암질 조면안산암이다. 미량원소(Zr, Nb, Y)를 이용한 현무암류의 생성 지구조환경 분류도에서, 이들은 대개 판내부환경 현무암류의 범주에 도시된다. Sr-Nd 동위원소상관도에서 북중국지괴와 북 남중국지괴의 충돌대에 분포하는 현무암류는 대개 맨틀배열 보다 매우 부화된 동위원소비를 가진다. 남중국지괴 현무암류의 $^{87}Sr/^{86}Sr$ 비는 북중국지괴의 범위와 유사하나 ${\varepsilon}_{Nd}$ 값은 북중국지괴에 비하여 상대적으로 높은 편이다. 북중국지괴와 충돌대의 현무암류들은 대개 낮은 $^{206}Pb/^{204}Pb(t)$ 비를 가지는 것이 특징이며, $^{207}Pb/^{204}Pb(t)$-$^{206}Pb/^{204}Pb(t)$ 상관도에서 지오크론의 왼쪽에 도시된다. 남중국지괴 현무암류는 지오크론의 오른쪽에 도시되며, 상대적으로 높은 방사기원 Pb 동위원소비를 가진다. 하양층군 현무암류는 Sr-Nd과 Pb-Pb 동위원소 상관도에서 북중국지괴 현무암류의 범주 내에 도시된다. 오랜 기간 동안 변성교대작용에 의해 지구화학적으로 부화된 암석권맨틀이 위 현무암류를 생성한 근원물질로 추정된다. 백악기초기의 확장응력장에서 발생한 연약권의 용승이 열원이 되어 암석권맨틀의 부분용융이 가능하였을 것이다. 암석권맨틀을 부화시킨 매체로는 엽렬되어 침몰된 하부지각이 재활성화되어 생성된 액, 섭입된 양쯔지괴 대륙지각 기원 액 내지는 섭입된 고태평양판 기원의 유체/액 등을 들 수 있다.

Geochemical characteristics of the Early Cretaceous igneous rocks from eastern China and the Gyeongsang Basin, Korean Peninsula has been summarized. They have wide range of lithological variation with extrusive picrite-basalt-andesite-trachyte-rhyolite and lamprophyre, and intrusive gabbro-diorite-monzonite-syenite-granite and diabase in eastern China, mostly belonging to the high-K calc-alkaline or shoshonitic series. The volcanic rocks intercalated with the Hayang Group sedimentary assemblages in the Gyeongsang basin are high-K to shoshonitic basaltic trachyandesites. The Early Cretaceous basaltic rocks studied mostly fall within the field of within-plate basalts on the Zr/Y-Zr and Nb-Zr-Y tectonic discrimination diagrams. On a Sr-Nd isotope correlation diagram, basaltic rocks from the North China block (NCB) and the continent-continent collision zone (CZ) between the North and South China blocks plot into the enriched lower right quadrant along the extension of the mantle array. The initial $^{87}Sr/^{86}Sr$ ratios of basaltic rocks from the South China block (SCB) are indistinguishable from those of the NCB and CZ basaltic rocks, but their ${\varepsilon}_{Nd}$ (t) values are relatively more elevated, plotting in right side of the mantle array. Basaltic rocks from the NCB and CZ are characterized by low $^{206}Pb/^{204}Pb(t)$ ratios, lying to the left of the Geochron on the $^{207}Pb/^{204}Pb(t)$ vs. $^{206}Pb/^{204}Pb(t)$ correlation. Meanwhile, the SCB basaltic rocks have relatively radiogenic Pb isotopic compositions compared with those of the NCB and CZ basaltic rocks. Basaltic rocks from the Hayang Group plot within the field of the NCB basaltic rocks in Sr-Nd and Pb-Pb isotope spaces. Metasomatically enriched subcontinental lithospheric mantle (SCLM) is likely to have been the dominant source for the early Cretaceous magmatism. Asthenospheric upwelling under an early Cretaceous extensional tectonic setting in eastern China and the Korean Peninsula might be a heat source for melting of the enriched SCLM. Metasomatic agents proposed include partial melts of lower continental crust delaminated and foundered into the mantle or subducted Yangtze continental crust, or fluid/melt derived from the subducted paleo-Pacific plate.

키워드

참고문헌

  1. Charoy, B. and Raimbault, L., 1994, Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, 35, 919-962. https://doi.org/10.1093/petrology/35.4.919
  2. Chen, B., Jahn, B., Arakawa, A., and Zhai, M.G., 2004, Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton and Sr-Nd-Pb isotopic constraints. Contributions to Mineralogy and Petrology, 148, 489-501. https://doi.org/10.1007/s00410-004-0620-0
  3. Chen, B., Jahn, B.-M., and Zhai, M., 2003, Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang- Yanshan orogen, North China craton, and implications for Archean lithosphere thinning. Journal of the Geological Society of London, 160, 963-970. https://doi.org/10.1144/0016-764902-129
  4. Chen, B. and Zhai, M., 2003, Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geological Magazine, 140, 87-93. https://doi.org/10.1017/S0016756802007124
  5. Chen, C.-H., Lee, C.-Y., and Shinjo, R., 2008, Was there Jurassic paleo-Pacific subduction in South China?: Constraints from $^{40}Ar/^{39}Ar$ dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts. Lithos, 106, 83-92. https://doi.org/10.1016/j.lithos.2008.06.009
  6. Chen, J. and Jahn, B.-M., 1998, Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284, 101-133. https://doi.org/10.1016/S0040-1951(97)00186-8
  7. Chen, J.-F., Yan, J., Xie, Z., Xu, X., and Xing, F., 2001, Nd and Sr isotopic compositions of igneous rocks from the lower Yangtze region in eastern China: Constraints on sources. Physics and Chemistry of the Earth, 26, 719-731. https://doi.org/10.1016/S1464-1895(01)00122-3
  8. Chough, S.-K., Kwon, S.-T., Ree, J.-H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Review, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Chough, S.-K. and Sohn, Y.-K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Science Review, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  10. Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelevic, D., and Venturelli, G., 2009b, Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107, 68-92. https://doi.org/10.1016/j.lithos.2008.07.016
  11. Conticelli, S., Marchionni, S., Rosa, D., Giordano, G., Boari, E., and Avanzinelli, R., 2009a, Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, southern Italy. Contributions to Mineralogy and Petrology, 157, 41-63. https://doi.org/10.1007/s00410-008-0319-8
  12. Darbyshire, D.P.F. and Sewell, R.J., 1997, Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong: implications for granite petrogenesis, regional structure and crustal evolution. Chemical Geology, 143, 81-93. https://doi.org/10.1016/S0009-2541(97)00101-0
  13. Deng, J.F., Mo, X.X., Zhao, H.L., Wu, Z.X., Luo, Z.H., and Su, S.G., 2005, A new model for the dynamic evolution of Chinese lithosphere: 'continental roots-plume tectonics'. Earth Science Review, 65, 223-275.
  14. Duggen, S., Hoernle, K., Van Den Boggard, P., and Garbe- Schönberg, D., 2005, Post-collisional transition from subduction- to intraplate-type delamination of subcontinental lithosphere. Journal of Petrology, 46, 1155-1201. https://doi.org/10.1093/petrology/egi013
  15. Fan, W.-M., Guo, F., Wang, Y.-J., Lin, G., and Zhang, M., 2001, Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Physics and Chemistry of the Earth, 26, 733-746. https://doi.org/10.1016/S1464-1895(01)00123-5
  16. Fan, W.-M., Guo, F., Wang, Y.-J., and Zhang, M., 2004, Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chemical Geology, 209, 27-48. https://doi.org/10.1016/j.chemgeo.2004.04.020
  17. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., and Liu, Y., 2002, Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198, 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2
  18. Gao, S., Rudnick, R.L., Xu, W.-L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.-R., and Yang, J., 2008, Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earth and Planetary Science Letters, 270, 41-53. https://doi.org/10.1016/j.epsl.2008.03.008
  19. Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W.-L., Ayers, J., Wang, X.-C., and Wang, Q.-H., 2004, Recycling lower continental crust in the North China craton. Nature, 432, 892-897. https://doi.org/10.1038/nature03162
  20. Gill, J. and Whelan, P., 1989, Early rifting of an oceanic island arc (Fiji) produced shoshonitic to tholeiitic basalts. Journal of Geophysical Research, 94, 4561-4578. https://doi.org/10.1029/JB094iB04p04561
  21. Griffin, W.L., Andi, Z., O'Reilly, S.Y., and Ryan, C.G., 1998, Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flowers, M.F.J., Chung, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle dynamics and plate interactions in East Asia. Geophysical Monograph: American Geophysical Union, 27, 107-126.
  22. Guo, F., Fan, W., and Li, C., 2006, Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens. Geological Magazine, 143, 1-13.
  23. Guo, F., Fan, W., Li, C., Wang, C.Y., Li, H., Zhao, L., and Li, J., 2014, Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chemical Geology, 381, 243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028
  24. Guo, F., Fan, W., Wang, Y., and Zhang, M., 2004, Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78, 291-305. https://doi.org/10.1016/j.lithos.2004.05.001
  25. Guo, F., Fan, W., Wang, Y., and Li, C., 2005, Petrogenesis and tectonic implications of Early Cretaceous high-K calc-alkaline volcanic rocks in the Laiyang Basin of the Sulu Belt, eastern China. Island Arc, 14, 69-90. https://doi.org/10.1111/j.1440-1738.2005.00458.x
  26. Guo, F., Fan, W.M., Wang, Y.J., and Lin, G., 2001, Late Mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth (A), 26, 759-771.
  27. Guo, J., Guo, F., Wang, C.Y., and Li, C., 2013, Crustal recycling processes in generating the early Cretaceous Fangcheng basalts, North China Craton: New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170-171, 1-16. https://doi.org/10.1016/j.lithos.2013.02.015
  28. Hacker, B., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., and Dong, S., 1998, U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters, 161, 215-230. https://doi.org/10.1016/S0012-821X(98)00152-6
  29. Hart, 1984, A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309, 753-757. https://doi.org/10.1038/309753a0
  30. Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T., and Rogers, N., 1995, Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research, 100, 10271-10286. https://doi.org/10.1029/94JB02508
  31. He, Y., Li, S., Hoefs, J., Huang, F., Liu, S.-A., and Hou, Z., 2011, Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75, 3815-3838. https://doi.org/10.1016/j.gca.2011.04.011
  32. He, Y., Li, S., Hoefs, J., and Kleinhanns, I.C., 2013, Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust. Lithos, 156-159, 204-217. https://doi.org/10.1016/j.lithos.2012.10.011
  33. Hirschmann, M.M., 2000, The mantle solidus: experimental constraints and the effect of peridotite composition. Geochemistry Geophysics Geosystems, 1 (2000GC000070).
  34. Hooper, P.R., Bailey, D.G., and Holder, G.A.M., 1995, Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific Northwest. Journal of Geophysical Research, 100, 10303-10319. https://doi.org/10.1029/94JB03328
  35. Huang, F., Li, S., Dong, F., Li, Q., Chen, F., Wang, Y., and Yang, W., 2007, Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos, 96, 151-169. https://doi.org/10.1016/j.lithos.2006.09.019
  36. Huang, J., Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhou, J.-B., and Liu, X., 2006, Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology, 229, 227-256. https://doi.org/10.1016/j.chemgeo.2005.11.007
  37. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  38. Ishizuka, O., Yuasa, M., Tamura, Y., Shukuno, H., Stern, R.J., Naka, J., Joshima, M., and Taylor, R.N., 2010, Migrating shoshonitic magmatism tracks Izu-Bonin-Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters, 294, 111-122. https://doi.org/10.1016/j.epsl.2010.03.016
  39. Jahn, B.M., Auvray, B., Shen, Q.H., Liu, D.Y., Zhang Z., Dong, Y.J., Ye, X.J., Zhang Q.Z., Cornichet, J., and Mace, J., 1988, Archean crustal evolution in China: the Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 38, 381-403. https://doi.org/10.1016/0301-9268(88)90035-6
  40. Jahn, B.-M., Wu, F., Lo, C.-H., and Tsai, C.-H., 1999, Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157, 119-146. https://doi.org/10.1016/S0009-2541(98)00197-1
  41. Kim, H.-S., Koh, J.-S., and Yun, S.-H., 2003, Petrology of the Cretaceous igneous rocks in the Mt. Baegyang area, Busan. Journal of Petrological Society of Korea, 12, 32-52.
  42. Kwon, S.-K., Choi, S.H., and Lee, D.-C., 2013, Sr-Nd-Hf-Pb isotope geochemistry of basaltic rocks from the Cretaceous Gyeongsang Basin, South Korea: Implications for basin formation. Journal of Asian Earth Sciences, 73, 504-519. https://doi.org/10.1016/j.jseaes.2013.05.011
  43. Lapierre, H., Jahn, B.M., Charvet, J., and Yu, Y.W., 1997, Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics, 274, 321-338. https://doi.org/10.1016/S0040-1951(97)00009-7
  44. Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., and Zanettin, B., 1989, A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford.
  45. Lee, D.-W., 1999, Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Island Arc, 8, 21-231.
  46. Li, B. and Jiang, S.-Y., 2014, Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust-mantle interaction and lithospheric extension. Journal of Asian Earth Sciences, 93, 253-274. https://doi.org/10.1016/j.jseaes.2014.07.040
  47. Li, S.-G., Jagoutz, E., Lo, C.-H., Chen, Y.Z., Li, Q.L., and Xiao, Y.L., 1999, Sm/Nd, Rb/Sr, and $^{40}Ar/^{39}Ar$ isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt, central China: A retrospective view. International Geology Review, 41, 1114-1124. https://doi.org/10.1080/00206819909465195
  48. Li, X.-H., 2000, Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18, 293-305. https://doi.org/10.1016/S1367-9120(99)00060-7
  49. Li, X.-H. and McCulloch, M.T., 1998, Geochemical characteristics of Cretaceous mafic dikes from Northern Guandong, SE China: age, origin and tectonic significance. In: Flower, M.F.J., et al. (Eds.), Mantle Dynamics and Plate Interaction in East Asia. American Geophysical Union, pp. 405-419.
  50. Liu, J., Xu, Z., Liou, J.G., and Song, B., 2004, SHRIMP UPb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22, 315-326. https://doi.org/10.1111/j.1525-1314.2004.00516.x
  51. Liu, S., Hu, R., Gao, S., Feng, C., Qu, Y., Wnag, T., Feng, G., and Coulson, I.M., 2008b, U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos, 106, 365-379. https://doi.org/10.1016/j.lithos.2008.09.004
  52. Liu, S., Hu, R., Gao, S., Feng, C., Yu, B., Feng, G., Qi, Y., Wang, T., and Coulson, I.M., 2009, Petrogenesis of Late Mesozoic mafic dykes i the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust. Lithos, 113, 621-639. https://doi.org/10.1016/j.lithos.2009.06.035
  53. Liu, S., Hu, R.Z., Gao, S., Feng, C.Z., Qi, L., Zhong, H., Xiao, T., Qi, Y.Q., Wang, T., and Coulson, I.M., 2008a, Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constraints on their petrogenesis and geodynamic significance. Chemical Geology, 255, 329-345. https://doi.org/10.1016/j.chemgeo.2008.07.006
  54. Liu, S., Zou, H., Hu, R., Zhao, J., and Feng, C., 2006, Mesozoic mafic dikes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications. Geochemical Journal, 40, 181-195. https://doi.org/10.2343/geochemj.40.181
  55. Liu, S.-A., Li, S., He, Y., and Huang, F., 2010, Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74, 7160-7178. https://doi.org/10.1016/j.gca.2010.09.003
  56. Lu, S., Zhao, G., Wang, H., and Hao, G., 2008, Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160, 77-93. https://doi.org/10.1016/j.precamres.2007.04.017
  57. Ma, L., Jiang, S.-Y., Hofmann, A.W., Dai, B.-Z., Hou, M.-L., Zhao, K.-D., Chen, L.-H., Li, J.-W., and Jiang, Y.-H., 2014a, Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochimica et Cosmochimica Acta, 124, 250-271. https://doi.org/10.1016/j.gca.2013.09.035
  58. Ma, L., Jiang, S.-Y., Hou, M.-L., Dai, B.-Z., Jiang, Y.-H., Yang, T., Zhao, K.-D., Pu, W., Zhu, Z.-Y., and Xu, B., 2014b, Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North China Craton. Gondwana Research, 25, 859-872. https://doi.org/10.1016/j.gr.2013.05.012
  59. Martin, H., Bonin, B., Capdevila, R., Jahn, B.M., Lameyre, J., and Wang, Y., 1994, The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. Journal of Petrology, 35, 983-1015. https://doi.org/10.1093/petrology/35.4.983
  60. Menzies, M.A., Fan, W.M., and Zhang, M., 1993, Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard, H.M., Alabaster, T., Harris, N.B.W., Neary, C.R. (Eds.), Magmatic processes and plate tectonics. Geological Society of London Special Publications, Vol. 76, p. 71-81. https://doi.org/10.1144/GSL.SP.1993.076.01.04
  61. Menzies, M.A., and Xu, Y.G., 1998, Geodynamics of the North China Craton. In: Flowers, M.F.J., Chung, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle dynamics and plate interactions in East Asia. Geophysical Monograph: American Geophysical Union, 27, 155-165.
  62. Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56, 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
  63. Miller, C., Schuster, R., Klotzli, U., Frank, W., and Purtscheller, F., 1999, Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40, 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
  64. Niu, Y., 2005, Generation and evolution of basaltic magmas: some basic concepts and new views on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities, 11, 9-46.
  65. Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33-47. https://doi.org/10.1007/BF00375192
  66. Pe-Piper, G., Piper, D.J.W., Koukouvelas, I., Dolansky, L.M., and Kokkalas, S., 2012, Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geological Society of America Bulletin 121, 39-54.
  67. Qiu, J., Xu, X., and Lo, C.-H., 2002, Potash-rich volcanic rocks and lamprophyres in western Shandong Province: $^{40}Ar/^{39}Ar$ dating and source tracing. Chinese Science Bulletin, 47, 91-99.
  68. Rapp, R.P., Shimizu, N., and Norman, M.D., 2003, Growth of early continental crust by partial melting of eclogite. Nature, 425, 605-609. https://doi.org/10.1038/nature02031
  69. Rapp, R.P. and Watson, E.B., 1995, Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891-931. https://doi.org/10.1093/petrology/36.4.891
  70. Rudnick, R.L. and Fountain, D.M., 1995, Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267-309. https://doi.org/10.1029/95RG01302
  71. Rudnick, R.L. and Gao, S., 2005, Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust: Treatise on Geochemistry 3, pp. 1-64.
  72. Rushmer, T., 1991, Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology, 107, 41-59. https://doi.org/10.1007/BF00311184
  73. Sewell, R.J. and Campbell, S.D.G., 1997, Geochemistry of coeval Mesozoic plutonic and volcanic suites in Hong Kong. Journal of the Geological Society of London, 154, 1053-1066. https://doi.org/10.1144/gsjgs.154.6.1053
  74. Shu, L.S., Deng, P., Wang, B., Tan, Z.Z., Yu, X.Q., and Sun, Y., 2004, Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China. Science in China Series D: Earth Sciences, 47, 673-688. https://doi.org/10.1360/03yd0113
  75. Su, Y., Zheng, J., Griffin, W.L., Zhao, J., O'Reilly, S.Y., Tang, H., Ping, X., and Xiong, Q., 2013, Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks. Lithos, 175-176, 333-350. https://doi.org/10.1016/j.lithos.2013.05.016
  76. Sun, F.Y., Shi, Z.L., and Feng, B.Z., 1995, Gold ore geology, lithogenesis and metalogenesis related to the differentiation of mantle-derived C-H-O fluids in Jiaodong Peninsula, eastern China. Jilin People's Press, Changchun, pp. 1-170 (in Chinese with English abstract).
  77. Sun, S.-S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In Magmatism in the Ocean Basins (eds. Saunders, A.D. and Norry, M.J.) Geological Society of Special Publication, 313-345.
  78. Sun, W., Ding, X., Hu, Y.-H., and Li, X.-H., 2007, The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262, 533-542. https://doi.org/10.1016/j.epsl.2007.08.021
  79. Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., Zha, X., and Liu, X., 2008b, Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research, 161, 389-418. https://doi.org/10.1016/j.precamres.2007.09.008
  80. Tang, Y,-J., Zhang, H.-F., Ying, J.-F., Zhang, J., and Liu, X.-M., 2008a, Refertilization of ancient lithospheric mantle beneath the central North China craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101, 435-432. https://doi.org/10.1016/j.lithos.2007.09.006
  81. Tang, Y.-J., Zheng, J.-P., and Yu, C.-M., 2009, Age and composition of the Rushan intrusive complex in the northern Sulu orogen, eastern China: petrogenesis and lithospheric mantle evolution. Geological Magazine, 146, 199-215. https://doi.org/10.1017/S0016756808005463
  82. Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth,C., Harris, N., Kelley, S., Van Calsteren, P., and Deng, W., 1996, Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37, 45-71. https://doi.org/10.1093/petrology/37.1.45
  83. Venturelli, G., Thorpe, R.S., Dal Piaz, G.V., Del Moro, A., and Potts, M.J., 1984, Petrogenesis of calc-alkaline, shoshonitic, and associated ultrapotassic Oligocene volcanic rocks from the northwestern Alps, Italy. Contributions to Mineralogy and Petrology, 86, 209-220. https://doi.org/10.1007/BF00373666
  84. Wan, T. and Zeng, H., 2002, The distinctive characteristics of the Sino-Korean and the Yangtze plates. Journal of Asian Earth Sciences, 20, 881-888. https://doi.org/10.1016/S1367-9120(01)00068-2
  85. Wang, Q., Wyman, D.A., Xu, J., Jian, P., Zhao, Z., Li, C., Xu, W., Ma, J., and He, B., 2007, Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71, 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008
  86. Wang, Q., Xu, J.-F., Zhao, Z.-H., Bao, Z.-W., Xu, W., and Xiong, X.-L., 2004, Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38, 417-434. https://doi.org/10.2343/geochemj.38.417
  87. Wang, Y., Fan, W., Cawood, P.A., and Li, S., 2008, Sr-Nd- Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland. Lithos, 106, 297-308. https://doi.org/10.1016/j.lithos.2008.07.019
  88. Wang, Y., Fan, W., Guo, F., Peng, T., and Li, C., 2003, Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtz and Cathaysia blocks. International Geology Review, 45, 263-286. https://doi.org/10.2747/0020-6814.45.3.263
  89. Wang, Y., Fan, W., Peng, T., Zhang, H., and Guo, F., 2005, Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: Evidence from $^{40}Ar/^{39}Ar$ geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chemical Geology, 220, 165-189. https://doi.org/10.1016/j.chemgeo.2005.02.020
  90. Wilde, S.A., Zhou, Z., Nemchin, A.A., and Sun, M., 2003, Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31, 817-820. https://doi.org/10.1130/G19489.1
  91. Wolf, M.B. and Wyllie, P.J., 1994, Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contributions to Mineralogy and Petrology, 115, 369-383. https://doi.org/10.1007/BF00320972
  92. Wu, F.Y., Ge, W.C., Sun, D.Y., and Guo, C.L. 2003b, Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers, 10, 51-60. (in Chinese with English abstract)
  93. Wu, F.Y., Lin, J.Q., Wilde, S.A., Zhang, X.O., and Yang, J.H., 2005, Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233, 103-119. https://doi.org/10.1016/j.epsl.2005.02.019
  94. Wu, F.-Y., Walker, R.J., Ren, X.-W., Sun, D.-Y., and Zhou, X.-H., 2003a, Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology, 196, 107-129. https://doi.org/10.1016/S0009-2541(02)00409-6
  95. Xie, G., Mao, J., Li, R., and Bierlein, F.P., 2008, Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtz River belt, Eastern China: Petrogenesis and tectonic setting. Lithos, 104, 216-230. https://doi.org/10.1016/j.lithos.2007.12.008
  96. Xu, J,-F., Shinjo, R., Defant, M.J., Wang, Q., and Rapp, R.P., 2002, Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30, 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
  97. Xu, J.W. and Zhu, G., 1994, Tectonic models of the Tan-Lu fault zone, eastern China. Geological Review, 36, 771-784 (in Chinese with English abstract). https://doi.org/10.1080/00206819409465487
  98. Xu, R., Liu, Y., Tong, X., Hu, Z., Zong, K., and Gao, S., 2013, In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: Insights into Pacific slab subduction-related mantle modification. Chemical Geology, 354, 107-123. https://doi.org/10.1016/j.chemgeo.2013.06.022
  99. Xu, W., Gao, S., Wang, Q., Wang, D., and Liu, Y., 2006, Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogitic xenoliths and petrologic implications. Geology, 34, 721-724. https://doi.org/10.1130/G22551.1
  100. Xu, Y., 2014, Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochimica et Cosmochimica Acta, 143, 49-67. https://doi.org/10.1016/j.gca.2014.04.045
  101. Xu, Y.G., 2001, Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean craton in China: Evidence, timing and mechanism. Physical Chemistry of Earth (A), 26, 747-757.
  102. Yang, D.-B., Xu, W.-L., Pei, F.-P., Yang, C.-H., and Wang, Q.-H., 2012b, Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139, 246-260. https://doi.org/10.1016/j.lithos.2011.06.004
  103. Yang, J.-H., Chung, S.-L., Wilde, S.A., Wu, F.-Y., Chu, M.-F., Lo, C.-H., and Fan, H.-R., 2005b, Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214, 99-125. https://doi.org/10.1016/j.chemgeo.2004.08.053
  104. Yang, J.-H., Chung, S.-L., Zhai, M.-G., and Zhou, X.-H., 2004, Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73, 145-160. https://doi.org/10.1016/j.lithos.2003.12.003
  105. Yang, J.-H., Wu, F.-Y., Chung, S.-L., Wilde, S.A., and Chu, M.-F., 2006, A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89, 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
  106. Yang, J.-H., Wu, F.-Y., Chung, S.-L., Wilde, S.A., Chu, M.-F., Lo, C.-H., and Song, B., 2005a, Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 222, 200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006
  107. Yang, Q.-L., Zhao, Z.-F., and Zheng, Y.-F., 2012a, Slabmantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155, 442-460. https://doi.org/10.1016/j.lithos.2012.10.003
  108. Yang, S.Y., Jiang, S.Y., Zhao, K.D., and Jiang, Y.H., 2013, Petrogenesis and tectonic significance of Early Cretaceous high-Zr rhyolite in the Dazhou uranium district, Gan-Hang Belt, Southeast China. Journal of Asian Earth Sciences, 74, 303-315. https://doi.org/10.1016/j.jseaes.2012.12.024
  109. Yao, J., Shu, L., Santosh, M., and Li, J., 2012, Precambrian crustal evolution of the South China Block and its relation to supercontinent history: Constraints from U-Pb ages, Lu-Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite. Precambrian Research, 208-211, 19-48. https://doi.org/10.1016/j.precamres.2012.03.009
  110. Yin, A. and Nie, S., 1993, An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12, 801-813. https://doi.org/10.1029/93TC00313
  111. Ying, J., Zhou, X., and Zhang, H., 2004, Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75, 413-426. https://doi.org/10.1016/j.lithos.2004.04.037
  112. Yu, J.-H., O'Reilly, S.Y., Wang, L., Griffin, W.L., Zhou, M.- F., Zhang, M., and Shu, L., 2010, Components and episodic growth of Precambrian crust in the Cathaysia Block, Neoproterozoic sediments. Precambrian Research, 181, 97-114. https://doi.org/10.1016/j.precamres.2010.05.016
  113. Yu, X., Wu, G., Zhang, D., Yan, T., Di, Y., and Wang, L., 2006, Cretaceous extension of the Ganhang Tectonic Belt, southeastern China: constraints from geochemistry of volcanic rocks. Cretaceous Research, 27, 663-672. https://doi.org/10.1016/j.cretres.2006.03.008
  114. Yun, S.H., Lee, M.W., Koh, J.S., Kim, Y.L., and Ahn, J.Y., 2000, Petrochemical study on the Daejeon-sa basalt in the Mt. Juwang area, Cheongsong. Journal of Petrological Society of Korea, 9, 84-98.
  115. Zeng, L. and Yan, L.-L., 2014, Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks: Comment. Lithos, 196-197, 376-379. https://doi.org/10.1016/j.lithos.2013.12.024
  116. Zhai, M., Fan, Q., Zhang, H., Sui, J., and Shao, J.A., 2007, Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: underplating, replacement and delamination. Lithos, 96, 36-54. https://doi.org/10.1016/j.lithos.2006.09.016
  117. Zhang H.-F., Sun, M., Zhou, M.-F., Fan, W.-M., Zhou, Z.-H., and Zhai, M.-G., 2004, Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geological Magazine, 141, 55-62. https://doi.org/10.1017/S0016756803008331
  118. Zhang H.-F., Sun, M., Zhou, X.-H., and Ying, J.-F., 2005, Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos, 81, 297-317. https://doi.org/10.1016/j.lithos.2004.12.015
  119. Zhang, H.-F., 2005, Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth and Planetary Science Letters, 237, 768-780. https://doi.org/10.1016/j.epsl.2005.06.041
  120. Zhang, H.-F. and Sun, M., 2002, Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. International Geology Review, 44, 370-382. https://doi.org/10.2747/0020-6814.44.4.370
  121. Zhang, H.-F., Sun, M., Zhou, X.-H., Fan, W.-M., Zhai, M.- G., and Yin, J.-F., 2002, Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144, 241-253. https://doi.org/10.1007/s00410-002-0395-0
  122. Zhang, J., Zhao, Y.-F., Liu, X., and Xie, L., 2012, Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139, 225-245. https://doi.org/10.1016/j.lithos.2011.06.006
  123. Zhang, J., Zhao, Z.-F., Zheng, Y.-F., and Dai, M., 2010, Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119, 512-536. https://doi.org/10.1016/j.lithos.2010.08.005
  124. Zhang, J.-J., Zheng, Y.-F., and Zhao, Z.-F., 2009, Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110, 305-326. https://doi.org/10.1016/j.lithos.2009.01.006
  125. Zhang, Y., Dong, S., and Shi, W., 2003, Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China. Tectonophysics, 363, 243-258. https://doi.org/10.1016/S0040-1951(03)00039-8
  126. Zhao J.-H., Hu, R., Zhou, M.-F., and Liu, S., 2007b, Elemental and Sr-Nd-Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution. Geological Magazine, 144, 937-952.
  127. Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., and Wu, Y.-B., 2007a, Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93, 248-272. https://doi.org/10.1016/j.lithos.2006.03.067
  128. Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Wu, Y.-B., Chen, F., and Jahn, B., 2005, Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83, 1-28. https://doi.org/10.1016/j.lithos.2004.12.014
  129. Zheng, Y.-F., Fu, B., Gong, B., and Li, L., 2003, Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Review, 62, 105-161. https://doi.org/10.1016/S0012-8252(02)00133-2
  130. Zheng, Y.-F., Wang, Z.-R., Li, S.-G., and Zao, Z.-F., 2002, Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochimica et Cosmochimica Acta, 66, 625-634. https://doi.org/10.1016/S0016-7037(01)00801-8
  131. Zhou, J., Jiang, Y.H., Xing, G.F., Zeng, Y., and Ge, W.Y., 2013, Geochronology and petrogenesis of Cretaceous Atype granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55, 1359-1383. https://doi.org/10.1080/00206814.2013.774199
  132. Zindler, A. and Hart, S., 1986, Chemical geodynamics. Annual Review of Earth Planetary Sciences, 14, 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425