References
- J. G. Lee, Computational Materials Science: An Introduction (2nd edition), CRC Press, Boca Raton, U. S. A., in preparation.
- Top500, www.top500.org./lists/2015/11/. Accessed on 16/12/2015.
- E. Schrodinger, Quantisierung als Eigenwertproblem; von Erwin Schrodinger, Ann. Physik, 79, 361-377 (1926).
- D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field, Part I. Theory and Methods," Proc. Camb. Phil. Soc., 24 [1] 89-110 (1928). https://doi.org/10.1017/S0305004100011919
- V. Fock, "Naherungsmethode zur Losung des Quantenmechanischen Mehrkorperproblems," Z. Phys., 61 [1] 126-48 and 62, 795 (1930). https://doi.org/10.1007/BF01340294
- P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev., 136 [3B] B864-71 (1964). https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn and L. J. Sham, "Self-consistent Equations including Exchange and Correlation Effects," Phys. Rev., A 140 1133-38 (1965).
- J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- A. Tkatchenko, L. Romaner, O. T. Hofmann, E. Zojer, C. Ambrosch-Draxl, and M. Scheffler, "Van der Waals Interactions between Organic Adsorbates and at Organic/Inorganic Interfaces," MRS Bulletin, 35 435-42 (2010). https://doi.org/10.1557/mrs2010.581
- J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid Functionals Based on a Screened Coulomb Potential," J. Chem. Phys., 118 [18] 8207-15 (2003). and "Erratum: Hybrid Functionals based on a Screened Coulomb Potential," J. Chem. Phys. 124 219906(E) (2006). https://doi.org/10.1063/1.1564060
- Y. Zhao and D. G. Truhlar, "The M06 Suite of Density Functionals," Theor. Chem. Acc., 120 215-41 (2008). https://doi.org/10.1007/s00214-007-0310-x
- L. Hedin, "New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem," Phys. Rev., 139 [3A] A796 (1965). https://doi.org/10.1103/PhysRev.139.A796
- W. G. Aulbur, L. Jonsson, and J. W. Wilkins, "Quasiparticle Calculations in Solids," Solid State Phys., 54 1-218 (2000).
- M. Shishkin, M. Marsman, and G. Kresse, "Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections," Phys. Rev. Lett., 99 [24] 246403 (2007). https://doi.org/10.1103/PhysRevLett.99.246403
-
J. Paier, R. Asahi, A. Nagoya, and G. Kresse, "
$Cu_2ZnSnS_4$ as a Potential Photovoltaic Material: A Hybrid Hartree-Fock Density Functional Theory Study," Phys. Rev. B, 79 [11] 115126 (2009). https://doi.org/10.1103/PhysRevB.79.115126 - A. L. M. Miguel, J. Vidal, M. Oliveira, L. Reining, and S. Botti, "Density-based Mixing Parameter for Hybrid Functionals," Phys. Rev. B, 83 [3] 035119 (2010).
- F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, "Defect Energetics in ZnO: A Hybrid Hartree-Fock Density Functional Study," Phys. Rev. B, 77 [24] 245202 (2008). https://doi.org/10.1103/PhysRevB.77.245202
- V. Ivady, R. Armiento, K. Szasz, E. Janzen, A. Gali, and I. A. Abrikosov, "Theoretical Unification of Hybrid-DFT and DFT+U Methods for the Treatment of Localized Orbitals," Phys. Rev. B, 90 [3] 035146 (2014). https://doi.org/10.1103/PhysRevB.90.035146
- Materials Studio, http://accelrys.com/products/collaborativescience/biovia-materials-studio. Accessed on 16/12/2015.
- CASTEP (Cambridge Serial Total Energy Package), http://www.castep.org/. Accessed on 16/12/2015.
- MedeA-VASP, http://www.materialsdesign.com/medea/medeavasp-52/. Accessed on 16/12/2015.
- Materials Design, Inc. Application Note, Interface Energy of Metal-Ceramic Interface Co-WC using Ab Initio Thermodynamics, 2008.
- Materials Project, https://www.materialsproject.org/. Accessed on 16/12/2015.
- Berkeley Lab, https://newscenter.lbl.gov/2015/04/06/accelerating-materials-discovery-with-worlds-largest-databaseof- elastic-properties/. Accessed on 16/12/2015.
- S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (dft-d) for the 94 Elements," J. Chem. Phys., 132 [15] 154104 (2010). https://doi.org/10.1063/1.3382344
- J. Hubbard, "Electron Correlations in Narrow Energy Bands"; pp.238-57 in Proceedings of the Royal Society of London, 1963.
- S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- G. Hautier, S. P. Ong, A. Jain, C. J. Moore, and G. Ceder, Accuracy of Density Functional Theory in Predicting Formation Energies of Ternary Oxides from Binary Oxides and Its Implication on Phase Stability, Phys. Rev. B, 85 [15] 155208 (2012). https://doi.org/10.1103/PhysRevB.85.155208
- R. Car and M. Parrinello, "Unified Approach for Molecular Dynamics and Density-Functional Theory," Phys. Rev. Lett., 55 [15] 2471-74 (1985). https://doi.org/10.1103/PhysRevLett.55.2471
- G. Kresse and J. Hafner, "Ab Initio Molecular-Dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium," Phys. Rev. B, 49 14251-69 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- E. J. Bylaska1, K. Glass, D. Baxter, S. B. Baden, and J. H. Weare, "Hard Scaling Challenges for Ab Initio Molecular Dynamics Capabilities in NWChem: Using 100,000 CPUs per second," J. Phys. Conf., 180 [1] 012028 (2009).
- Materials Design, Application Note, Prediction of Schottky Barrier in Electronic Device, 2013.
- V. Eyert, Prediction of Electronic Materials Properties using MedeA, Materials Design Users Group Meeting, Heidelberg, Sep. 2015.
- Q. An, A. Jaramillo-Botero, W.-G. Liu, and W. A. Goddard III, "Reaction Pathways of GaN (0001) Growth from Trimethylgallium and Ammonia versus Triethylgallium and Hydrazine Using First Principle Calculations," J. Phys. Chem. C, 119 [8] 4095-103 (2015). https://doi.org/10.1021/jp5116405
Cited by
- A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process vol.56, pp.6, 2016, https://doi.org/10.4191/kcers.2019.56.6.12
- First-principles calculations of hybrid inorganic-organic interfaces: from state-of-the-art to best practice vol.23, pp.14, 2016, https://doi.org/10.1039/d0cp06605b