DOI QR코드

DOI QR Code

Trends in Computational Materials Science Based on Density Functional Theory

  • Lee, June Gunn (Honorary Scientists Office, Korea Institute of Science and Technology)
  • Received : 2015.12.16
  • Accepted : 2016.03.11
  • Published : 2016.03.31

Abstract

This review deals with computational treatments of subatomic levels of matter based on density functional theory (DFT), and tries to identify several current trends, which are largely consequences of the ever-increasing power of computers, which has substantially extended the performance of conventional DFT beyond its original scope. This review mainly focuses on the conceptual outline, rather than on lines of equations, highlighting several examples of calculations for each topic. It should be noted that these issues are hardly new to leading groups in the field, but certainly are for materials people in general. It should also be noted that the on-going efforts will continue and lead to a larger system size, a longer time scale, a higher accuracy, and a better efficiency of calculation for years to come.

Keywords

References

  1. J. G. Lee, Computational Materials Science: An Introduction (2nd edition), CRC Press, Boca Raton, U. S. A., in preparation.
  2. Top500, www.top500.org./lists/2015/11/. Accessed on 16/12/2015.
  3. E. Schrodinger, Quantisierung als Eigenwertproblem; von Erwin Schrodinger, Ann. Physik, 79, 361-377 (1926).
  4. D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field, Part I. Theory and Methods," Proc. Camb. Phil. Soc., 24 [1] 89-110 (1928). https://doi.org/10.1017/S0305004100011919
  5. V. Fock, "Naherungsmethode zur Losung des Quantenmechanischen Mehrkorperproblems," Z. Phys., 61 [1] 126-48 and 62, 795 (1930). https://doi.org/10.1007/BF01340294
  6. P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev., 136 [3B] B864-71 (1964). https://doi.org/10.1103/PhysRev.136.B864
  7. W. Kohn and L. J. Sham, "Self-consistent Equations including Exchange and Correlation Effects," Phys. Rev., A 140 1133-38 (1965).
  8. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  9. A. Tkatchenko, L. Romaner, O. T. Hofmann, E. Zojer, C. Ambrosch-Draxl, and M. Scheffler, "Van der Waals Interactions between Organic Adsorbates and at Organic/Inorganic Interfaces," MRS Bulletin, 35 435-42 (2010). https://doi.org/10.1557/mrs2010.581
  10. J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid Functionals Based on a Screened Coulomb Potential," J. Chem. Phys., 118 [18] 8207-15 (2003). and "Erratum: Hybrid Functionals based on a Screened Coulomb Potential," J. Chem. Phys. 124 219906(E) (2006). https://doi.org/10.1063/1.1564060
  11. Y. Zhao and D. G. Truhlar, "The M06 Suite of Density Functionals," Theor. Chem. Acc., 120 215-41 (2008). https://doi.org/10.1007/s00214-007-0310-x
  12. L. Hedin, "New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem," Phys. Rev., 139 [3A] A796 (1965). https://doi.org/10.1103/PhysRev.139.A796
  13. W. G. Aulbur, L. Jonsson, and J. W. Wilkins, "Quasiparticle Calculations in Solids," Solid State Phys., 54 1-218 (2000).
  14. M. Shishkin, M. Marsman, and G. Kresse, "Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections," Phys. Rev. Lett., 99 [24] 246403 (2007). https://doi.org/10.1103/PhysRevLett.99.246403
  15. J. Paier, R. Asahi, A. Nagoya, and G. Kresse, "$Cu_2ZnSnS_4$ as a Potential Photovoltaic Material: A Hybrid Hartree-Fock Density Functional Theory Study," Phys. Rev. B, 79 [11] 115126 (2009). https://doi.org/10.1103/PhysRevB.79.115126
  16. A. L. M. Miguel, J. Vidal, M. Oliveira, L. Reining, and S. Botti, "Density-based Mixing Parameter for Hybrid Functionals," Phys. Rev. B, 83 [3] 035119 (2010).
  17. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, "Defect Energetics in ZnO: A Hybrid Hartree-Fock Density Functional Study," Phys. Rev. B, 77 [24] 245202 (2008). https://doi.org/10.1103/PhysRevB.77.245202
  18. V. Ivady, R. Armiento, K. Szasz, E. Janzen, A. Gali, and I. A. Abrikosov, "Theoretical Unification of Hybrid-DFT and DFT+U Methods for the Treatment of Localized Orbitals," Phys. Rev. B, 90 [3] 035146 (2014). https://doi.org/10.1103/PhysRevB.90.035146
  19. Materials Studio, http://accelrys.com/products/collaborativescience/biovia-materials-studio. Accessed on 16/12/2015.
  20. CASTEP (Cambridge Serial Total Energy Package), http://www.castep.org/. Accessed on 16/12/2015.
  21. MedeA-VASP, http://www.materialsdesign.com/medea/medeavasp-52/. Accessed on 16/12/2015.
  22. Materials Design, Inc. Application Note, Interface Energy of Metal-Ceramic Interface Co-WC using Ab Initio Thermodynamics, 2008.
  23. Materials Project, https://www.materialsproject.org/. Accessed on 16/12/2015.
  24. Berkeley Lab, https://newscenter.lbl.gov/2015/04/06/accelerating-materials-discovery-with-worlds-largest-databaseof- elastic-properties/. Accessed on 16/12/2015.
  25. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (dft-d) for the 94 Elements," J. Chem. Phys., 132 [15] 154104 (2010). https://doi.org/10.1063/1.3382344
  26. J. Hubbard, "Electron Correlations in Narrow Energy Bands"; pp.238-57 in Proceedings of the Royal Society of London, 1963.
  27. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505
  28. G. Hautier, S. P. Ong, A. Jain, C. J. Moore, and G. Ceder, Accuracy of Density Functional Theory in Predicting Formation Energies of Ternary Oxides from Binary Oxides and Its Implication on Phase Stability, Phys. Rev. B, 85 [15] 155208 (2012). https://doi.org/10.1103/PhysRevB.85.155208
  29. R. Car and M. Parrinello, "Unified Approach for Molecular Dynamics and Density-Functional Theory," Phys. Rev. Lett., 55 [15] 2471-74 (1985). https://doi.org/10.1103/PhysRevLett.55.2471
  30. G. Kresse and J. Hafner, "Ab Initio Molecular-Dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium," Phys. Rev. B, 49 14251-69 (1994). https://doi.org/10.1103/PhysRevB.49.14251
  31. E. J. Bylaska1, K. Glass, D. Baxter, S. B. Baden, and J. H. Weare, "Hard Scaling Challenges for Ab Initio Molecular Dynamics Capabilities in NWChem: Using 100,000 CPUs per second," J. Phys. Conf., 180 [1] 012028 (2009).
  32. Materials Design, Application Note, Prediction of Schottky Barrier in Electronic Device, 2013.
  33. V. Eyert, Prediction of Electronic Materials Properties using MedeA, Materials Design Users Group Meeting, Heidelberg, Sep. 2015.
  34. Q. An, A. Jaramillo-Botero, W.-G. Liu, and W. A. Goddard III, "Reaction Pathways of GaN (0001) Growth from Trimethylgallium and Ammonia versus Triethylgallium and Hydrazine Using First Principle Calculations," J. Phys. Chem. C, 119 [8] 4095-103 (2015). https://doi.org/10.1021/jp5116405

Cited by

  1. A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process vol.56, pp.6, 2016, https://doi.org/10.4191/kcers.2019.56.6.12
  2. First-principles calculations of hybrid inorganic-organic interfaces: from state-of-the-art to best practice vol.23, pp.14, 2016, https://doi.org/10.1039/d0cp06605b