DOI QR코드

DOI QR Code

Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics

  • Kim, Jong-Hyun (Department of Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and Technology) ;
  • Seo, In-Tae (Department of Materials Science and Engineering, Korea University) ;
  • Hur, Joon (Department of Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and Technology) ;
  • Kim, Dae-Hyeon (Department of Materials Science and Engineering, Korea University) ;
  • Nahm, Sahn (Department of Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and Technology)
  • Received : 2016.01.23
  • Accepted : 2016.03.21
  • Published : 2016.03.31

Abstract

$MnO_2$ was added to the $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ (NKN-CT) ceramics in order to promote the densification and improve the poling efficiency by increasing the resistance of the specimens. Densification and abnormal grain growth occurred in the $MnO_2$-added NKN-CT ceramics sintered at $1020^{\circ}C$, indicating that $MnO_2$ assisted the liquid-phase sintering of these materials. $Mn^{3+}$ ions were considered to enter the A-site of the matrix, thereby producing the free electrons, which interacted with the holes resulting from the evaporation of alkali ions. This interaction results in an increase in the resistance of the specimens. The increased resistance improved the poling efficiency and, hence, the dielectric and piezoelectric properties of the NKN-CT ceramics. A few of the $Mn^{3+}$ ions that entered the B-site of the NKN-CT matrix led to a slight increase in the mechanical quality factor.

Keywords

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp.271, Academic, New York, 1971.
  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 84-7 (2004). https://doi.org/10.1038/nature03028
  3. Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata and T. Takenaka, "($Bi_{1/2}Na_{1/2}$)$TiO_3$-($Bi_{1/2}K_{1/2}$)$TiO_3$-$BaTiO_3$-Based Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 44 [6B] 4350-53 (2005). https://doi.org/10.1143/JJAP.44.4350
  4. J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715
  5. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  6. J. Fu, R. Zuo, X. Fang, and K. Liu, "Lead-Free Ceramics Based on Alkaline Niobate Tantalate Antimonate With Excellent Dielectric and Piezoelectric Properties," Mater. Res. Bull., 44 [5] 1188-90 (2009). https://doi.org/10.1016/j.materresbull.2008.11.009
  7. P. Jarupoom, K. Pengpat, S. Eitssayeam, U. Intatha, G. Rujijanagul, and T. Tunkasiri, "Structures and Properties of Lead-Free NKN Piezoelectric Ceramics," Ferrolectrics. Lett., 35 119-27 (2009).
  8. L. Egerton and D. M. Dillon, "Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate," J. Am. Ceram. Soc., 42 [9] 438-42 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  9. H. J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, and M. Kuball, "Raman Spectroscopy of (K,Na)$NbO_3$ and $(K,Na)_{1-x}Li_xNbO_3$," Appl. Phys. Lett., 93 [26] 262901 (2008). https://doi.org/10.1063/1.3056658
  10. R. Zuo and J. Fu, "Rhombohedral-Tetragonal Phase Coexistence and Piezoelectric Properties of (Na,K)(Nb,Sb)$O_3$-$LiTaO_3$-$BaZrO_3$ Lead-Free Ceramics," J. Am. Ceram. Soc., 94 [5] 1467-70 (2011). https://doi.org/10.1111/j.1551-2916.2010.04256.x
  11. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, "Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics," J. Am. Chem. Soc., 136 [7] 2905-10 (2014). https://doi.org/10.1021/ja500076h
  12. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, "Lead-Free Piezoelectrics Based on Potassium-Sodium Niobate with Giant $d_{33}$," ACS Appl. Mater. Interfaces., 5 [16] 7718-25 (2013). https://doi.org/10.1021/am402548x
  13. H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, and D. H. Kim, "Microstructure and Piezoelectric Properties of Lead-Free (1-x)($Na_{0.5}K_{0.5}$)$NbO_3$-xCa$TiO_3$ Ceramics," J. Appl. Phys., 102 [12] 124101 (2007). https://doi.org/10.1063/1.2822334
  14. S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, "Effect of CuO on the Sintering Temperature and Piezoelectric Properties of Lead-Free 0.95($K_{0.5}Na_{0.5}$)$NbO_3$-0.05Ca$TiO_3$ Ceramics," Mater. Res. Bull., 43 [12] 3580-86 (2008). https://doi.org/10.1016/j.materresbull.2008.01.015
  15. Murata Manufacturing Co., Ltd., "No. P19E-6," Murata Manufacturing Co., Ltd, Kyoto, 2005.
  16. D. Lin, K.W. Kwok and H.L.W. Chan, "Effects of $MnO_2$ on the Microstructure and Electrical Properties of 0.94($K_{0.5}Na_{0.5}$)$NbO_3$-0.06Ba($Zr_{0.05}Ti_{0.95}$)$O_3$ Lead-Free Ceramics," Mater Chem Phys., 109 455-8 (2008). https://doi.org/10.1016/j.matchemphys.2007.12.015
  17. H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, and S. Nahm, "Microstructure and Piezoelectric Properties of 0.95($Na_{0.5}K_{0.5}$)$NbO_3$-0.05$BaTiO_3$0.95($Na_{0.5}K_{0.5}$)$NbO_3$-0.05$BaTiO_3$ Ceramics," Appl. Phys. Lett., 89 [6] 062906 (2006). https://doi.org/10.1063/1.2335816
  18. H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, and H. G. Lee, "Microstructure and Piezoelectric Properties of (1-x)($Na_{0.5}K_{0.5}$)$NbO_3$-xLi$NbO_3$ Ceramics," J. Am. Ceram. Soc., 90 [6] 1812-16 (2007). https://doi.org/10.1111/j.1551-2916.2007.01698.x
  19. S. Priya and S. Nahm, Lead-Free Piezoelectrics; Ch. 4, Springer, New York, 2012.
  20. J. H. Ahn, J. H. Lee, S. H. Hong, N. M. Hwang and D. Y. Kim, "Effect of the Liquid-Forming Additive Content on the Kinetics of Abnormal Grain Growth in Alumina," J. Am. Ceram. Soc., 86 [8] 1421-23 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03486.x

Cited by

  1. Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.04
  2. Annealing effects on the structure and properties of Mn-doped (K0.48Na0.52)NbO3 lead-free piezoceramics vol.29, pp.13, 2018, https://doi.org/10.1007/s10854-018-9218-6
  3. 과 액상 형성에 의한 비납계 압전 (Na,K)NbO3-Ba(Cu,Nb)O3 결정립의 비정상 성장 거동 및 전기적 특성 vol.29, pp.4, 2016, https://doi.org/10.3740/mrsk.2019.29.4.205