References
- Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R. and Rouhi, H. (2014), "Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory", Eur. J. Mech. A-Solid., 45, 143-152. https://doi.org/10.1016/j.euromechsol.2013.11.002
- Chan, K.T. and Zhao, Y. (2011), "The dispersion characteristics of the waves propagating in a spinning single-walled carbon nanotube", Sci. China-Phys. Mech. Astron., 54(10), 1854-1865. https://doi.org/10.1007/s11433-011-4476-9
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Hosseini-Hashemi, S., Nazemnezhad, R. and Rokni, H. (2015), "Nonlocal nonlinear free vibration of nanobeams with surface effect", Eur. J. Mech. A-Solid., 52, 44-53. https://doi.org/10.1016/j.euromechsol.2014.12.012
- Huang, L.Y., Han, Q. and Liang, Y.J. (2012), "Calibration of nonlocal scale effect parameter for bending single-layered grapheme sheet under molecular dynamics", Nano., 7(5), 1250033. https://doi.org/10.1142/S1793292012500336
- Khademolhosseini, F., Phani, A.S., Nojeh, A. and Rajapakse, N. (2012), "Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes", IEEE Trans. Nanotech., 11(1), 34-43. https://doi.org/10.1109/TNANO.2011.2111380
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. B. Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Ogata, S., Li, J. and Yip, S. (2002), "Ideal pure shear strength of aluminum and copper", Sci., 298(5594), 807-811. https://doi.org/10.1126/science.1076652
- Shen, H.S. and Zhang, C.L. (2010), "Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model", Compos. Struct., 92(5), 1073-1084. https://doi.org/10.1016/j.compstruct.2009.10.002
- Vosoughi, A.R. (2014), "Thermal postbuckling analysis of functionally graded beams", J. Therm. Stress., 37(4), 532-544. https://doi.org/10.1080/01495739.2013.872462
- Vosoughi, A.R. (2016), "Nonlinear free vibration of functionally graded nanobeams on nonlinear elastic foundation", Iran. J. Sci. Tech. Trans. Civil Eng., 45(1), 581-586.
- Vosoughi, A.R., Malekzadeh, P. and Razi, H. (2013), "Response of moderately thick laminated composite plates on elastic foundation subjected to moving load", Compos. Struct., 97, 286-295. https://doi.org/10.1016/j.compstruct.2012.10.017
- Vosoughi, A.R. and Nikoo, M.R. (2015), "Maximum fundamental frequency and thermal buckling temperature of laminated composite plates by a new hybrid multi-objective optimization technique", Thin-Wall. Struct., 95, 408-415. https://doi.org/10.1016/j.tws.2015.07.014
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, L.F. and Hu, H.Y. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B., 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, Q., Han, Q.K. and Wen, B.C. (2008), "Estimate of material properties of carbon nanotubes via nonlocal elasticity", Adv. Theor. Appl. Mech., 1(1), 1-10.
- Zenkour, A.M. and Abouelregal, A.E. (2014), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., Int. J., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
- Zhang, X., Jiao, K., Sharma, P. and Takobson, B.I. (2006), "An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to grapheme", J. Mech. Phys. Solid., 54(11), 2304-2329. https://doi.org/10.1016/j.jmps.2006.06.007
- Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B., 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404
- Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A. (2006), "Atomistic calculation of elastic moduli in strained silicon", Semiconduct. Sci. Tech., 21: 906-911. https://doi.org/10.1088/0268-1242/21/7/014
Cited by
- Thermal Post-buckling Analysis of Moderately Thick Nanobeams 2017, https://doi.org/10.1007/s40996-017-0084-x
- A mixed finite element and improved genetic algorithm method for maximizing buckling load of stiffened laminated composite plates vol.70, 2017, https://doi.org/10.1016/j.ast.2017.08.022
- An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies 2017, https://doi.org/10.1080/17415977.2017.1377707
- A new hybrid CG-GAs approach for high sensitive optimization problems: With application for parameters estimation of FG nanobeams vol.52, 2017, https://doi.org/10.1016/j.asoc.2016.12.016
- Dynamic moving load identification of laminated composite beams using a hybrid FE-TMDQ-GAs method vol.25, pp.11, 2017, https://doi.org/10.1080/17415977.2016.1275613
- A new mixed method for nonlinear fuzzy free vibration analysis of nanobeams on nonlinear elastic foundation vol.24, pp.24, 2018, https://doi.org/10.1177/1077546316648491
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates vol.28, pp.4, 2016, https://doi.org/10.12989/scs.2018.28.4.509
- A Nonlocal Strain Gradient Approach for Out-of-Plane Vibration of Axially Moving Functionally Graded Nanoplates in a Hygrothermal Environment vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/8332125