DOI QR코드

DOI QR Code

Free vibration analysis of composite cylindrical shells with non-uniform thickness walls

  • Javed, Saira (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu SIna Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Viswanathan, K.K. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu SIna Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Aziz, Z.A. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu SIna Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia)
  • 투고 : 2015.09.02
  • 심사 : 2016.01.06
  • 발행 : 2016.04.10

초록

The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.

키워드

참고문헌

  1. Alibeigloo, A. (2009), "Static and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space differential quadrature method", Int. J. Pres. Ves. Pip., 86(11), 738-747. https://doi.org/10.1016/j.ijpvp.2009.07.002
  2. Alibeigloo, A. and Shakeri, M. (2007), "Elasticity solution for the free vibration analysis of Laminated cylindrical panels using the differential quadrature method", Compos. Struct., 81(1), 105-113. https://doi.org/10.1016/j.compstruct.2006.08.003
  3. Alibeigloo, A., Kani, A.M. and Pashaei, M.H. (2012), "Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers", Int. J. Pres. Ves. Pip., 89, 98-111. https://doi.org/10.1016/j.ijpvp.2011.10.020
  4. Asgari, M. (2015), "Material distribution optimization of 2D heterogeneous cylinder under thermomechanical loading", Struct. Eng. Mech., Int. J., 53(4), 703-723. https://doi.org/10.12989/sem.2015.53.4.703
  5. Bickley, W.G. (1968), "Piecewise cubic interpolation and two-point boundary problems", Comput. J., 11(2), 206-208. https://doi.org/10.1093/comjnl/11.2.206
  6. Beni, Y.T. and Zeverdejani, M.K. (2014), "Free vibration of microtubules as elastic shell model based on modified couple stress theory", J. Mech. Med. Biol., 15(3), 1550037. https://doi.org/10.1142/S0219519415500372
  7. Chaudhuri, R.A. and Abu-Arja, K.R. (1991), "Static analysis of moderately-thick finite antisymmetric angleply cylindrical panels and shells", Int. J. Solid. Struct., 28(1), 1-15. https://doi.org/10.1016/0020-7683(91)90044-G
  8. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
  9. Chorfi, S. and Houmat, A. (2010), "Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form", Compos. Struct., 92(10), 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001
  10. Edalat, P., Khedmati, M.R. and Soares, C.G. (2014), "Free vibration analysis of open thin deep shells with variable radii of curvature", Meccanica, 49(6), 1385-1405. https://doi.org/10.1007/s11012-014-9904-2
  11. Featherston, D. and Barabasz, M. (2000), "Loudspeaker response improvement using cone thickness variation", J. Audio Eng. Soc., 48(12), 1216-1220.
  12. Ferreira, A.J.M., Carrera, E. and Cinefra, M. (2011), "Analysis of laminated doubly-curved shellsby a layerwise theory and radial basis functions collotion, accounting for through-the-thickness deformations", Comput. Mech., 48(1), 13-25. https://doi.org/10.1007/s00466-011-0579-4
  13. George, H.S. (1999), Laminar Composites, Butterworth-Heinemann Publications, USA.
  14. Hosseini-Hashemi, S., Abaei, A.R. and Ilkhani, M.R. (2015), "Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions", Compos. Struct., 126, 1-15. https://doi.org/10.1016/j.compstruct.2015.02.031
  15. Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), "Free vibration of anti-symmetric angleply plates with variable thickness", Compos. Struct., 137, 56-69. https://doi.org/10.1016/j.compstruct.2015.11.016
  16. Kang, J.H. (2012), "Three-dimensional vibration of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. https://doi.org/10.1016/j.jsv.2012.04.021
  17. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
  18. Katariya, P.V., Panda, S.K. and Isikveren, A. (2015), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  19. Khalifa, A.M. (2012), "A solution of free vibration and stability problem of an axially loaded cylindrical shell with a four lobed cross section of variable thickness", Kuwait J. Sci. Eng., 39(2), 69-90.
  20. Khan, K., Patel, B.P. and Nath, Y. (2015), "Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells", Compos. Struct., 126, 386-397. https://doi.org/10.1016/j.compstruct.2015.02.022
  21. Liew, K.M., Bergman, L.A., Ng, T.Y. and Lam, K.Y. (2000), "Three-dimensional vibration of cylindrical shell panels-solution by continuum and discrete approaches", Computat. Mech., 26(2), 208-221. https://doi.org/10.1007/s004660000168
  22. Lopatin, A.V. and Morozov, E.V. (2015), "Fundamental frequency of the laminated composite cylindrical shell with clamped edges", Int. J. Mech. Sci., 92, 35-43. https://doi.org/10.1016/j.ijmecsci.2014.11.020
  23. Mahapatra, T. and Panda, S. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using non-linear FEM", J. Therm. Stress., 38(1), 39-68. https://doi.org/10.1080/01495739.2014.976125
  24. Mahapatra, T., Kar, V. and Panda, S. (2014), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", Int. J. Struct. Stab. Dy., 16, 1450105.
  25. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 1099636215577363.
  26. Narita, Y., Ohta, Y., Yamada, G. and Kobayashi, Y. (1992), "Analytical method for vibration of angle-ply cylindrical shells having arbitrary edges", AIAA journal, 30(3), 790-796. https://doi.org/10.2514/3.10986
  27. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18 (1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  28. Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solid. Struct., 36(10), 1523-1540. https://doi.org/10.1016/S0020-7683(98)00050-X
  29. Panda, S. and Mahapatra, T. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. https://doi.org/10.1007/s11012-013-9785-9
  30. Panda, S. and Singh, B. (2009), "Nonlinear free vibration of spherical shell panel using higher order shear deformation theory-a finite element approach", Int. J. Pres. Ves. Pip., 86(6), 373-383. https://doi.org/10.1016/j.ijpvp.2008.11.023
  31. Qu, Y., Long, X., Wu, S. and Meng, G. (2013), "A unified formulation for vibration analysis of composite lamniated shells of revolution including shear deformation and rotary inertia", Compos. Struct., 98, 169-191. https://doi.org/10.1016/j.compstruct.2012.11.001
  32. Sahan, M.F. (2015), "Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation", Steel Compos. Struct., Int. J., 18(4), 889-907. https://doi.org/10.12989/scs.2015.18.4.889
  33. Sahoo, S.S., Panda, S.K. and Singh, V.K. (2015), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 1464420715600191.
  34. Selahi, E., Setoodeh, A.R. and Tahani, M. (2014), "Three-dimentional transient analysis of functionally graded truncated conical shells with variable thickness subjected to an asymmetric dynamic pressure", Int. J. Pres. Ves. Pip., 119, 29-38. https://doi.org/10.1016/j.ijpvp.2014.02.003
  35. Shao, Z.S. and Ma, G.W. (2007), "Free vibration analysis of laminated cylindrical shells by using fourier series expansion method", J. Thermoplast. Compos. Mater., 20(6), 551-573. https://doi.org/10.1177/0892705707084542
  36. Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., Int. J., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
  37. Soldatos, K.P. and Messina, A. (2001), "The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels", Comput. Method. Appl. Mech. Eng., 190(18-19), 2385-2409. https://doi.org/10.1016/S0045-7825(00)00242-5
  38. Viswanathan, K.K., Kim, K.S., Lee, J.H., Koh, H.S. and Lee, J.B. (2008), "Free vibration of multilayered circular cylindrical shell with cross-ply walls, including shear deformation by using spline function method", J. Mech. Sci. Technol., 22(11), 2062-2075. https://doi.org/10.1007/s12206-008-0747-4
  39. Viswanathan, K.K. and Kim, K.S. (2008), "Free vibration of antisymmetric angle-ply-laminated plates including shear deformation: Spline method", Int. J. Mech. Sci., 50(10-11), 1476-1485. https://doi.org/10.1016/j.ijmecsci.2008.08.009
  40. Viswanathan, K., Javed, S., Prabakar, K., Aziz, Z.A. and Bakar, I.A. (2015a), "Free vibration of antisymmetric angle-ply laminated conical shells", Compos. Struct., 122, 488-495. https://doi.org/10.1016/j.compstruct.2014.11.075
  41. Viswanathan, K., Aziz. Z.A., Javed., S., Yaacob, Y. and Pullepu, B. (2015b), "Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method", Journal of Mech. Sci. Technol., 29(5), 2073-2080. https://doi.org/10.1007/s12206-015-0428-z
  42. Viswanathan, K.K., Javed, S., Aziz, Z.A. and Prabakar, K. (2015c), "Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory", Meccanica, 50(12), 3013-3027. https://doi.org/10.1007/s11012-015-0175-3
  43. Viswanathan, K.K. and Javed, S. (2016), "Free vibration of anti-symmetric angle-ply cylindrical shell walls using first-order shear deformation theory", J. Vib. Control, 1077546314544893.
  44. Zeighampour, H. and Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85(4), 539-553. DOI: 10.1007/s00419-014-0929-8
  45. Zeighampour, H., Beni, Y.T. and Mehralian, F. (2015), "A shear deformable conical shell formulation in the framework of couple stress theory", Acta Mechanica, 226(8), 1-23. https://doi.org/10.1007/s00707-014-1156-7
  46. Zerin, Z. (2013), "On the vibration of laminated nonhomogeneous orthotropic shells", Meccanica, 48(7), 1557-1572. https://doi.org/10.1007/s11012-012-9684-5

피인용 문헌

  1. Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells vol.22, pp.5, 2016, https://doi.org/10.12989/scs.2016.22.5.1193
  2. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.517
  3. Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle vol.68, pp.3, 2016, https://doi.org/10.12989/sem.2018.68.3.377
  4. Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells vol.33, pp.2, 2016, https://doi.org/10.12989/scs.2019.33.2.163
  5. Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method vol.34, pp.3, 2020, https://doi.org/10.12989/scs.2020.34.3.361
  6. Finite element vibration analysis of laminated composite parabolic thick plate frames vol.35, pp.1, 2016, https://doi.org/10.12989/scs.2020.35.1.043
  7. Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations vol.37, pp.1, 2020, https://doi.org/10.12989/scs.2020.37.1.051
  8. Geometrical Influences on the Vibration of Layered Plates vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/8843358
  9. The effects of rotation on the frequencies and critical speed of CNTs/fiber/polymer/metal laminates cylindrical shell vol.15, pp.2, 2016, https://doi.org/10.1016/j.arabjc.2021.103575