DOI QR코드

DOI QR Code

행동 인지에 따라 사용자 생체 신호를 측정하는 웨어러블 디바이스 소프트웨어 구조

Software Architecture of a Wearable Device to Measure User's Vital Signal Depending on the Behavior Recognition

  • Choi, Dong-jin (Kyungpook National University, Department of Convergence Software) ;
  • Kang, Soon-Ju (Kyungpook National University, College of IT Engineering, School of Electronics Engineering)
  • 투고 : 2015.10.31
  • 심사 : 2016.03.21
  • 발행 : 2016.03.31

초록

본 논문은 사용자의 행동을 실시간 인지하여 그 행동과 연동하여 생체 신호를 측정 할 수 있는 착용형 단말 소프트웨어 구조를 제안한다. 착용형 단말은 사용자가 일상생활 동안 항상 착용하고 있기 때문에 이러한 장치를 통하여 생체 신호를 측정하는 것은 사용자 행동과 관련된 건강 정보를 얻을 수 있게 해준다. 이 중 산소포화도와 심박수는 사용자가 운동을 하거나 수면을 취하는 동안 변화를 측정하면 호흡기 상태를 진단하는데 사용할 수 있다. 그러나 이런 생체 신호를 생활 중에 측정하는데 있어서 기존의 방법과 같이 연속적으로 측정하는 것은 움직임으로 인한 신호 왜곡 때문에 정확성을 떨어뜨리게 된다. 또 왜곡을 고치기 위해서 복잡한 알고리즘을 적용하는 것도 착용형 단말의 한정적인 자원을 고려하면 적절하지 않다. 따라서 본 논문에서는 연산이 간단한 필터와 가속도 센서를 이용하여 사용자 행동을 먼저 판단하고 그에 연동하여 정확한 생체신호를 측정할 수 있는 착용형 단말 소프트웨어 구조를 제안한다.

The paper presents a software architecture for a wearable device to measure vital signs with the real-time user's behavior recognition. Taking vital signs with a wearable device help user measuring health state related to their behavior because a wearable device is worn in daily life. Especially, when the user is running or sleeping, oxygen saturation and heart rate are used to diagnose a respiratory problems. However, in measuring vital signs, continuosly measuring like the conventional method is not reasonable because motion artifact could decrease the accuracy of vital signs. And in order to fix the distortion, a complex algorithm is not appropriate because of the limited resources of the wearable device. In this paper, we proposed the software architecture for wearable device using a simple filter and the acceleration sensor to recognize the user's behavior and measure accurate vital signs with the behavior state.

키워드

참고문헌

  1. H. Al Haddad, et al., "Effect of acute hypoxia on post-exercise parasympathetic reactivation in healthy men," Front. Physiol., vol. 3, Jul. 2012.
  2. N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, "Activity recognition from accelerometer data," AAAI, vol. 5, pp. 1541-1546, Jul. 2005.
  3. X. Long, B. Yin, and R. M. Aarts, "Single-accelerometer-based daily physical activity classification," Eng. Med. Biology Soc., pp. 6107-6110, Sept. 2009.
  4. A. M. Khan, et al., "A triaxial accelerometerbased physical-activity recognition via augmented-signal features and a hierarchical recognizer," Inf. Technol. in Biomed., vol. 14, no. 5, pp. 1166-1172, Jun. 2010. https://doi.org/10.1109/TITB.2010.2051955
  5. S. Seyedtabaii and L. Seyedtabaii, "Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal," World Academy Sci. Eng. Technol., vol. 37, pp. 173-176, 2008.
  6. H. Lee, et al., "The periodic moving average filter for removing motion artifacts from PPG signals," Int. J. Control Automation and Syst., vol. 5, no. 6, pp. 701-706, Dec. 2007.
  7. R. Yousefi, et al., "A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors," IEEE J. Biomedical and Health Informatics, vol. 18, no. 2, pp. 670-681, May 2013. https://doi.org/10.1109/JBHI.2013.2264358
  8. A. R. Relente and L. G. Sison, "Characterization and adaptive filtering of motion artifacts in pulse oximetry using accelerometers," Eng. Med. Biology, vol. 2, pp. 1769-1770, Oct. 2002.
  9. N. S. Schenkel, et al., "Oxygen saturation during daily activities in chronic obstructive pulmonary disease," Eur. Respiratory J., vol. 9, no. 12, pp. 2584-2589, Dec. 1996. https://doi.org/10.1183/09031936.96.09122584
  10. A. Romem, et al., "Diagnosis of obstructive sleep apnea using pulse oximeter derived photoplethysmographic signals," J. JCSM, vol. 10, no. 3, pp. 285-290, Mar. 2014.
  11. C. C. Rezk, et al., "Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity," Eur. J. Appl. Physiol. 98, pp. 105-112, Sept. 2006. https://doi.org/10.1007/s00421-006-0257-y
  12. B. S. Kim and K. Y. Sun, "Motion artifact reduction in photoplethysmography using independent component analysis," IEEE Trans. Biomed. Eng., vol. 53, no. 3, pp. 566-568, Mar. 2006. https://doi.org/10.1109/TBME.2005.869784
  13. L. B. Wood, and H. H. Asada, "Low variance adaptive filter for cancelling motion artifact in wearable photoplethysmogram sensor signals," 29th Annu. Int. Conf. IEEE, Eng. Med. and Biol. Soc., pp. 652-655, Aug. 2007.
  14. H. H. Asada, H.-H. Jiang, and P. Gibbs, "Active noise cancellation using MEMS accelerometers for motion-tolerant wearable bio-sensors," 26th Annu. Int. Conf. IEEE, Eng. Med. Biol. Soc., vol. 1, pp. 2157-2160, Sept. 2004.
  15. W. Zong, et al., "An open-source algorithm to detect onset of arterial blood pressure pulses," Computers in Cardiology, pp. 259-262, Sept. 2003.

피인용 문헌

  1. 3D Printing 공정을 이용한 PDMS Mold 제작 vol.41, pp.6, 2016, https://doi.org/10.3795/ksme-a.2017.41.6.553
  2. Robotic Arm Control System Based on AI Wearable Acceleration Sensor vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5544375