DOI QR코드

DOI QR Code

Isolation and Characterization of Mannanase-Producing Bacillus amyloliquefaciens YJ17 from Spent Mushroom (Flammulina velutipes) Substrates

  • Kim, Hye Soo (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Chul Hwan (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kwon, Hyun Sook (Korea Promotion Institute for Traditional Medicine Industry) ;
  • Cho, Soo Jeong (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2016.03.02
  • Accepted : 2016.03.24
  • Published : 2016.03.31

Abstract

The mannanase-producing bacteria, designated YJ17, was isolated from spent mushroom (Flammulina velutipes) substrates. The isolate YJ17 was a facultative anaerobic and was grown at temperatures ranging from $20^{\circ}C$ to $50^{\circ}C$ with an optimal temperature of $40^{\circ}C$. The DNA G+C content of the YJ17 was 44 mol%. The major fatty acids were anteiso-15:0 (38.9%), 17:0 (7.6%), and iso-15:0 (36.5%). The 16S rRNA gene sequence similarity between the isolate YJ17 and other Bacillus strains was from 98% to 99%. In the phylogenetic analysis based on these sequences, the isolate YJ17 and Bacillus amyloliquefaciens clustered within a group together and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate YJ17 was classified within the genus Bacillus as B. amyloliquefaciens YJ17. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens YJ17 were pH 7.0 and $50^{\circ}C$, respectively.

Keywords

References

  1. Admark P, Varga A, Medve J, Harjunp V, Drakenberg T, Tjerneld F. 1998. Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a $\beta$-mannanase. J Biotechnol. 63:199-210. https://doi.org/10.1016/S0168-1656(98)00086-8
  2. Akino T, Nakamura N, Horikoshi K. 1987. Production of $\beta$-mannosidase and $\beta$-mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol. 26:323-327.
  3. Arisan-Atac I, Hodits R, Kristufek D, Kubicek CP. 1993. Purification and characterization of a $\beta$-mannanase of Trichoderma reesei C-30m. Appl Microbiol Biotechnol. 39:58-62. https://doi.org/10.1007/BF00166849
  4. Claus D, Berkeley RCW. 1986. In Bergey's Manual of Systematic Bacteriology. pp. 1105-1139,Vol. 2, Williame & Wilkins.
  5. Cho SJ. Isolation and characterization of mannanase producing Bacillus amyloliquefaciens CS47 from horse feces. Life Sci. 19:1724-1730.
  6. Ethier N, Talbot G, Sygusch J. 1998. Gene cloning, DNA sequencing, and expression of thermostable $\beta$-mannanase from Bacillus stearothermophilus. Appl Environ Microbiol. 64:4428-4432.
  7. Ferreira HM, Filho EXF. 2004. Purification and characterization of a $\beta$-mannanase from Trichoderma harzianum strain T4. Carbohydr Polymer. 57: 23-29. https://doi.org/10.1016/j.carbpol.2004.02.010
  8. Khanongnuch C, Asada K, Tsuruga H, Ooi T, Kinoshita S, Lumyong S. 1998. $\beta$-Mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. J Ferment Bioeng. 86:461-466. https://doi.org/10.1016/S0922-338X(98)80152-9
  9. Kurakake M, Komaki T. 2001. Production of $\beta$-mannanase and $\beta$-mannosidase from Aspergillus awamori K4 and their properties. Curr Microbiol. 42: 377-380. https://doi.org/10.1007/s002840010233
  10. Logan NA, Berkeley RC. 1984. Identification of Bacillus strains using the API system. J Gen Microbiol. 130:1871-1882.
  11. Mandel M, Marmur J. 1968. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12:195-206. https://doi.org/10.1016/0076-6879(67)12133-2
  12. McCleary BV. 1988. $\beta$-mannanase, pp. 596-610, In Wood WA, and Kellogg ST. (eds.), Methods in Enzymology, Vol. 160, Academic Press Inc., NewYork.
  13. Mendoza NS, Arai M, Kawaguchi T, Yoshida T, Joson LM. 1994a. Purification and properties of mannanase from Bacillus subtilis. World J Microbiol Biotechnol. 10:551-555. https://doi.org/10.1007/BF00367665
  14. Mendoza NS, Arai M, Kawaguchi T, Cubol FS, Panerio EG, Yoshida T. 1994b. Isolation of mannan-utilizing bacteria and the culture conditions for mannanase production. World J Microbiol Biotechnol. 10:51-54. https://doi.org/10.1007/BF00357563
  15. Miller. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry 31:426-428. https://doi.org/10.1021/ac60147a030
  16. Ooi T, Kikuchi D. 1995. Purification and some properties of $\beta$-mannanase from Bacillus sp. World J Microbiol Biotechnol. 11:310-314. https://doi.org/10.1007/BF00367106
  17. Petty LA, Carter SD, Senne BW, Shriver JA. 2002. Effects of $\beta$-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weaning and growing-finishing pig. J Anim Sci. 80:1012-1019. https://doi.org/10.2527/2002.8041012x
  18. Sachslehner A, Haltrich D. 1999. Purification and some properties of a thermostable acidic endo-$\beta$-1,4-d-mannanase from Sclerotium (Athelia) rolfsii. FEMS Microbiol Lett. 177:47-55.
  19. Schaeffer P, Millet J, Aubert JP. 1965. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci. USA 54:704-711. https://doi.org/10.1073/pnas.54.3.704
  20. Slominski BA, Meng X, Campbell LD, Guenter W, Jones O. 2006. The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: Flaxseed. Poult Sci. 85:1031-1037. https://doi.org/10.1093/ps/85.6.1031
  21. Takahashi R, Kusakabe I, Kobayashi H, Murakami K, Maekawa A, Suzuki T. 1984. Purification and some properties of mannanase from Streptomyces sp. Agri Biol Chem. 48:2189-2195.
  22. Wozniewski T, Blaschek W, Franz G. 1992. Isolation and characterization of an endo-$\cdot$‚-mannanase of Lilium testaceum bulbs. Phytochemistry 31:3365-3370. https://doi.org/10.1016/0031-9422(92)83687-T
  23. Yamaura I, Matsumoto T. 1993. Purification and some properties of endo-1,4-$\cdot$‚-D-mannanase from a mud snail, Pomacea insularus (de Ordigny). Biosci Biotechnol Biochem. 57:1316-1319. https://doi.org/10.1271/bbb.57.1316
  24. Yoon KH, Lim BL. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J Microbiol Biotechnol. 17:1688-1694.
  25. Zakaria MM, Yamamoto S, Yagi T. 1998. Purification and characterization of an endo-1,4-$\beta$-mannanase from Bacillus subtilis KU-1. FEMS Microbiol Lett. 158:25-31.
  26. Zhang J, He ZM, Hu K. 2000. Purification and characterization of $\beta$-mannanase from Bacillus licheniformis for industrial use. Biotechnol Lett. 22:1375-1378. https://doi.org/10.1023/A:1005644414762
  27. Zou XT, Qiao XJ, Xu ZR. 2006. Effect of $\beta$-mannanase (Hemicell) on growth performance and immunity of broilers. Poult Sci. 85:2176-2179. https://doi.org/10.1093/ps/85.12.2176