DOI QR코드

DOI QR Code

Various Quantum Ring Structures: Similarity and diversity

  • Received : 2016.02.22
  • Accepted : 2016.03.04
  • Published : 2016.03.30

Abstract

Similarity and diversity of various quantum ring structures are investigated by classifying energy dispersions of three different structures: an electrostatic quantum ring, a magnetic quantum ring, and a magnetic-electric quantum ring. The wave functions and the eigenenergies of a single electron in the quantum ring structures are calculated by solving the Schrdinger equation without any electron-electron interaction. Magnetoconductance is studied by calculating a two-terminal conductance while taking into account the backscattering via the resonance through the states of the quantum rings at the center of a quasi-one dimensional conductor. It is found that the energy spectra for the various quantum ring structures are sensitive to additional electrostatic potentials as well as to the effects of a nonuniform magnetic field. There are also characteristics of similarity and diversity in the energy dispersions and in the single-channel magnetoconductance.

Keywords

References

  1. M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990). https://doi.org/10.1063/1.103923
  2. M. L. Leadbeater, S. J. Allen, Jr., F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991). https://doi.org/10.1063/1.348298
  3. S. H. Park and H. -S. Sim, Phys. Rev. B 77, 075433 (2008). https://doi.org/10.1103/PhysRevB.77.075433
  4. C.M. Lee, R. C.H. Lee, W.Y. Ruan, M.Y. Chou, and A. Vyas, Solid State Commun. 156, 49 (2013) https://doi.org/10.1016/j.ssc.2012.11.024
  5. C. M. Lee and K. S. Chan, J. Appl. Phys. 114, 143708 (2013). https://doi.org/10.1063/1.4824808
  6. Dali Wang and Guojun Jin, Phys. Lett. A 373, 4082 (2009). https://doi.org/10.1016/j.physleta.2009.09.007
  7. F. M. Peeters and A. Matulis, Phys. Rev. B 48, 15166 (1993) https://doi.org/10.1103/PhysRevB.48.15166
  8. F. M. Peeters and A. Matulis, Phys. Rev. Lett. 72, 1518 (1994) https://doi.org/10.1103/PhysRevLett.72.1518
  9. I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 52, 17321 (1995) https://doi.org/10.1103/PhysRevB.52.17321
  10. I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 56, 7508 (1997). https://doi.org/10.1103/PhysRevB.56.7508
  11. H-S. Sim, K-H. Ahn, K. J. Chang, G.Ihm, N. Kim, and S. J. Lee, Phys. Rev. Lett. 80, 1501 (1998) https://doi.org/10.1103/PhysRevLett.80.1501
  12. H. -S. Sim, G. Ihm, N, Kim, S. J. Lee, and K. J. Chang, Physica E, 12, 719 (2002). https://doi.org/10.1016/S1386-9477(01)00457-X
  13. J. E. Muller, Phys. Rev. Lett. 68, 385 (1992). https://doi.org/10.1103/PhysRevLett.68.385
  14. M. Calvo, Phys. Rev. B 48, 2365 (1993) https://doi.org/10.1103/PhysRevB.48.2365
  15. M. Calvo, Phys. Rev. B 51, 2268 (1995). https://doi.org/10.1103/PhysRevB.51.2268
  16. N. Kim, G. Ihm, H.-S. Sim, and K. J. Chang, Phys. Rev. B 60, 8767 (1999). https://doi.org/10.1103/PhysRevB.60.8767
  17. Y. Takagaki and D. K. Ferry, Phys. Rev B. 48, 8152 (1993). https://doi.org/10.1103/PhysRevB.48.8152
  18. R. Garibay-Alomso, J. L. Marin and R. A. Rosas, Solid States Commun. 137, 248 (2006).
  19. W.-C. Tan and J. C. Inkson, Phys. Rev. B 53, 6947 (1996). https://doi.org/10.1103/PhysRevB.53.6947
  20. U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320 (1991) https://doi.org/10.1103/PhysRevB.43.7320
  21. M.Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B 45, 1951 (1992).