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ABSTRACT 

In this paper, we propose an integrated data envelopment analysis (DEA) and analytic hierarchy process (AHP) meth-
odology in which the information about the hierarchical structures of input-output data can be reflected in the per-
formance assessment of decision making units (DMUs). Firstly, this can be implemented by extending a traditional 
DEA model to a three-level DEA model. Secondly, weight bounds, using AHP, can be incorporated in the three-level 
DEA model. Finally, the effects of incorporating weight bounds can be analyzed by developing a parametric distance 
model. Increasing the value of a parameter in a domain of efficiency loss, we explore the various systems of weights. 
This may lead to various ranking positions for each DMU in comparison to the other DMUs. An illustrative example 
of road safety performance for a set of 19 European countries highlights the usefulness of the proposed approach. 
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1.  INTRODUCTION 

Data envelopment analysis (DEA) is an objective 
data-oriented approach for assessing the relative effi-
ciency of decision making units (DMUs) with multiple 
inputs and outputs. In classical DEA models, each DMU 
is allowed to choose its own favorable system of weights 
to maximize its relative efficiency. This freedom from 
choosing weights is equivalent to keeping the preferences 
of the decision-maker (DM) out of the decision process. 

On the other hand, the analytic hierarchy process 
(AHP) is a multi-attribute decision- making method that 
can reflect a priori information about the relative prior-
ity of inputs, outputs or even DMUs in the efficiency 
assessment. AHP can be combined with DEA models in 
different ways. The most common way is the imposition 
of weight restrictions in DEA models. Referring to the 
literature, AHP can estimate the bounds of the following 
restrictions in DEA: 
• Absolute weight restrictions. These restrictions directly 

impose upper and (or) lower bounds on the weights of 
inputs (outputs) using AHP (Pakkar, 2014a; Entani et 

al., 2004). 
• Relative weight restrictions. These restrictions limit the 

relationship between the weights of inputs (outputs) 
using AHP (Lee et al., 2012; Liu et al., 2005; Taka-
mura and Tone, 2003; Tseng et al., 2009; Kong and 
Fu, 2012). 

• Virtual weight restrictions. A single virtual input (out-
put) is defined as the weighted sum of all inputs (out-
puts). We refer to the proportion of each component 
of such sum as the “virtual weight” of an input (out-
put). These restrictions limit virtual weights using AHP 
(Premachandra, 2001; Shang and Sueoshi, 1995). 

• Restrictions on input (output) units. These restrictions 
impose bounds on changes of inputs (outputs) while 
the relative importance of such changes is computed 
using AHP (Lozano and Villa, 2009).  

 
There are a number of other methods that do not 

necessarily apply additional restrictions to a DEA model. 
Such as converting the qualitative data in DEA to the 
quantitative data using AHP (Azadeh et al., 2008; Ertay 
et al., 2006; Jyoti et al., 2008; Korpela et al., 2007; Lin 
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et al., 2011; Ramanathan, 2007; Yang and Kuo, 2003; 
Raut, 2011), ranking the efficient/inefficient units in 
DEA models using AHP in a two stage process (Ho and 
Oh , 2010; Jablonsky, 2007; Sinuany-Stern et al., 2000), 
weighting the efficiency scores obtained from DEA us-
ing AHP (Chen, 2002), weighting the inputs and outputs 
in the DEA structure (Pakkar, 2014b; Cai and Wu, 2001; 
Feng et al., 2004; Kim, 2000), constructing a convex 
combination of weights using AHP and DEA (Liu and 
Chen, 2004) and estimating missing data in DEA using 
AHP (Saen et al., 2005). Nevertheless, the above- men-
tioned literature is limited to the applications with one-
level DEA models, which may not entirely satisfy the 
need for increasingly complex assessment problems. 

In a recent paper, Pakkar (2015) proposes an inte-
grated DEA and AHP approach to assess the perform-
ance of DMUs. The core logic of the proposed approach 
is to reflect the relative priority of inputs and outputs in 
performance assessment under hierarchical structures of 
data. This approach can be organized into the following 
steps: 

 
1. The classical CCR (one-level) DEA model is used to 

compute the efficiency of each DMU after normaliz-
ing the original data. The computed efficiencies in 
this step will be part of the data used in the next step. 

2. A two-level DEA model is used to obtain a set of 
weights of inputs and outputs for each DMU under 
the hierarchical structures of data (the minimum effi-
ciency loss).  

3. The two level-DEA model is bounded by AHP weights 
to reflect the priority weights of inputs and outputs in 
the performance assessment (the maximum efficiency 
loss). 

4. A parametric-distance model is developed to explore 
various sets of weights within the defined domain of 
efficiency losses. 

 
In two-level DEA models which originally devel-

oped by Meng et al. (2008), the inputs and outputs of 
similar characteristics are grouped into their own cate-
gories using a weighted sum approach. Nonetheless, 
these inputs and outputs might also belong to different 
sub-categories and further be linked to one another con-
stituting a three-level hierarchical structure. To over-
come this limitation, we similarly integrate AHP to a 
three-level DEA model. A three-level DEA model re-
flects the characteristics of the generalized multi-level 
DEA model developed by Shen et al. (2011). Theoreti-
cally, the approach proposed in this paper may also be 
considered as an extension to the three-level DEA model 
without explicit inputs, using AHP, to constructing com-
posite indicators proposed by Pakkar (2016). 

2. Methodology 

2.1 A Basic DEA Model 

In a classical DEA model, the optimal values of the 

variables (weights) are highly sensitive to the scales 
used for each input and output (Cooper et al., 2004). It 
seems logical and desirable to have scale independent 
weights that can be interpreted in some meaningful way. 
This may be achieved by using a unified-scale or nor-
malized data. For this purpose, the distance to a refer-
ence approach is adopted as follows (OECD, 2008):  
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Where ˆijx  and ˆrjy are the raw values of input ( , 2, , )Li i m  
and output ),,2,1( srr L=  for DMU ).,,2,1( njj L=  ijx

 and rjy  are the corresponding normalized values of in-
put i and output r for DMU j. Then the fractional CCR- 
DEA model can be developed as follows (Charnes et al., 
1978): 
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where kE  is the relative efficiency of DMU under as-
sessment. k is the index for the DMU under assessment 
where k ranges over 1, 2, …, n. iv

 
and ru are the weights 

of input ( 1, 2, , )i i m= L
 
and output ).,,2,1( srr L=  The 

first set of constraints (4) assures that if the computed 
weights are applied to a group of n DMUs, ,,2,1( L=j  

),n  they do not attain an efficiency value of larger than 
1. The second set of constraints (5) indicates the non-
negative conditions for the model variables. 

2.2 Three-Level DEA Model 

We develop our formulation based on the general-
ized distance model (Kao and Hung, 2005) in such a 
way that the hierarchical structures of data, using a wei-
ghted-average approach, are taken into consideration 
(Shen et al., 2011). Let hh ijx ′  be the value of input ( 1,i i =  
2, , )mL  of sub-category ( 1, 2, , )h h M′ ′ ′= L  of category 

( 1, 2, , ),h h M= L  and ll rjy ′  be the value of output ( 1,r r =  
2, , )sL  of sub-category ( 1, 2, , )l l S′ ′ ′= L  of category (l =  
1, 2, , )SL  for DMU ),,2,1( njj L=  after normalizing 
the original data. Let hh iv ′  be the internal weight of input i 
of sub-category h′  of category h  and ll ru ′  be the inter-
nal weight of output r of sub-category l′  of category ,l   
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Let hq and lp be the weights of categories h and l, respec-
tively. Then, the new multipliers of input i of sub-cate-
gory h′  of category h and output r of sub-category l′  of 
category l are defined as: hh i h hh hh iv q q v′ ′ ′′ =  and ll r l llu p p′ ′′ =  

,ll ru ′  respectively. Similarly, the new multiplier of sub-
category l′  of category l is defined as: .ll l llp p p′ ′′ =  

Let 
*
kE ),,2,1( nk L=  be the best attainable efficiency 

value for the DMU under assessment, calculated from the 
CCR-DEA model. We want the efficiency value ( ,k ll rE u ′′  

),hh iv ′′  calculated from the set of weights ll ru ′′  and hh iv ′′  to 
be closest to 

*.kE  Our definition of closest is that the 
largest distance is at its minimum. Hence we choose the 
form of the minimax model: { *

,min max ( ,
ll r hh iu v k k k ll rE E u
′ ′′ ′ ′′−  

})hh iv ′′  to minimize a single deviation which is equiva-
lent to the following nonlinear model: 

 
 Min θ  (6) 

s.t. 

* 1 1 1

1 1 1

,

S S s

ll r ll rk
l l r

k M M m

hh i hh ik
h h i

u y
E

v x
θ

′

′ ′
′= = =
′

′ ′
′= = =

′
− ≤

′

∑∑∑

∑∑∑
 (7) 

*1 1 1

1 1 1

S S s

ll r ll rj
l l r

jM M m

hh i hh ij
h h i

u y
E

v x

′

′ ′
′= = =
′

′ ′
′= = =

′
≤

′

∑∑∑

∑∑∑
 ,j∀  (8) 

1 1

S s

ll r l
l r

u p
′

′
′= =

′ =∑∑  ,l∀  (9) 

1 1

M m

hh i h
h i

v q
′

′
′= =

′ =∑∑  ,h∀  (10) 

1

s

ll r ll
r

u p′ ′
=

′ ′=∑   , ,l l′∀  (11) 

1

m

hh i hh
i

v q′ ′
=

′ ′=∑  , ,h h′∀  (12) 

, , , , , 0ll r ll l hh i hh hu p p v q q′ ′ ′ ′′ ′ ′ ′ >  , , , , , ,l l r h h i′ ′∀  (13) 
0 1.θ≤ ≤  (14) 
 
The combination of (6)-(14) forms a three-level 

DEA model that identifies the minimum efficiency loss, 
min ,θ θ=  needed to arrive at an optimal set of weights. 

Constraint (7) ensures that each DMU loses no more 
than θ  of its best attainable efficiency value, 

*.kE  The 
second set of constraints (8) satisfies that the efficiency 

values of all DMUs are less than or equal to their upper 
bound of 

*.jE  The sets of constraints (9) to (12) imply 
that the sum of weights under each (sub-) sub-category 
equals to the weight of that (sub-) sub-category. It 
should be noted that the original (or internal) weights of 
outputs and inputs used for calculating the weighted 
averages are obtained as ll r ll r llu u p′ ′ ′′ ′=  and hh i hh r hhv v q′ ′ ′′ ′=  
while ll ll lp p p′ ′′= and ,hh hh lq q q′ ′′=  respec-tively. 

2.3 Prioritizing Weights Using AHP 

The three-level DEA model identifies the minimum 
efficiency loss minθ

 
needed to arrive at a set of weights 

of inputs and outputs by the internal mechanism of DEA. 
On the other hand, the priority weights of inputs and 
outputs, and the corresponding (sub-) categories are 
defined out of the internal mechanism of DEA by AHP.  

In order to more clearly demonstrate how AHP is 
integrated into the three- level DEA model, this research 
presents an analytical process in which output weights 
are bounded by the AHP method. All the description on 
imposing weight bounds for output weights may be eas-
ily extendable to input weights. The AHP procedure for 
imposing weight bounds may be broken down into the 
following steps: 

 
Step 1: A decision maker makes a pairwise comparison 
matrix of different criteria, denoted by A, with the en-
tries of ( 1, 2, , ).loa l o S= = L  The comparative impor-
tance of criteria is provided by the decision maker using 
a rating scale. Saaty (1980) recommends using a 1-9 
scale. 

 
Step 2: The AHP method obtains the priority weights of 
criteria by computing the eigenvector of matrix A (Eq. 
15), 1 2( , , , ) ,T

Sw w w w= L  which is related to the largest 
eigenvalue, max .λ  

max .Aw wλ=    (15) 

To determine whether or not the inconsistency in a com-
parison matrix is reasonable the random consistency 
ratio, C.R., can be computed by the following equation: 

max. .
(N 1) . .

NC R
R I

λ −
=

−
    (16) 

where R.I. is the average random consistency index and 
N is the size of a comparison matrix. In a similar way, 
the priority weights of (sub-) sub-criteria under each (sub-) 
criterion can be computed. To obtain the weight bounds 
for output weights in the three-level DEA model, this 
study aggregates the priority weights of three different 
levels in AHP as follows: 
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where lw is the priority weight of criterion ),,1( Sll L=  
in AHP, lle ′

 
is the priority weight of sub-criterion (l l′ ′ =  

1, 2, , )S′L  under criterion l  and ll rf ′
 
is sub-sub-criterion 

),,1( srr L=  under sub-criterion .l′  Similarly, the weight 
bounds for input weights in the three-level DEA model, 
using AHP, is obtained as: 
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where hw′ is the priority weight of criterion ( 1, 2, ,h h = L  

)M  in AHP, hhe ′′
 
is the priority weight of sub-criterion 

( 1, 2, , )h h M′ ′ ′= L  under criterion h  and hh if ′′
 
is sub-sub- 

criterion ( 1, 2, , )i i m= L  under sub-criterion .h′  
In order to estimate the maximum efficiency loss 

maxθ  necessary to achieve the priority weights of inputs 
and outputs for each DMU the following sets of con-
straints are added to the three-level DEA model: 

 
ll r ll ru uα′ ′′ = , , ,l l r′∀  while 0.α >       (19)  

hh i hh iv vβ′ ′′ = , , ,h h i′∀  while 0.β >      (20) 
 
The two sets of constraints (19)and (20) change the 

AHP computed weights to weights for the new system 
by means of two scaling factorsα and .β  The scaling 
factorsα and β

 
are added to avoid the possibility of 

contradicting constraints leading to infeasibility or un-
derestimating the relative efficiencies of DMUs (Podi-
novski, 2004). 

2.4 A Parametric Distance Model 

We can now develop a parametric distance model 
for various discrete values of parameter θ  such that minθ  

max.θ θ≤ ≤  Let ( )ll ru θ′′
 
and ( )hh iv θ′′  be the weights of out-

puts and inputs for a given value of parameter ,θ  where 
outputs are under sub-category ( 1, 2, , )l l S′ ′ ′= L  of cate-
gory ),,2,1( Sll L=  and inputs are under sub-category 

( 1, 2, , )h h M′ ′ ′= L  of category ( 1, 2, , ).h h M= L  Let
 

*
ll ru ′′  and 

*
hh iv ′′

 
be the priority weights of outputs and inputs 

obtained from the three-level DEA model after adding 
(19) and (20). Our objective is to minimize the total devi-
ations of ( )ll ru θ′′

 
and ( )hh iv θ′′  from their priority weights, 

*
ll ru ′′

 
and 

* ,hh iv ′′  with the shortest Euclidian distance meas-
ure subject to the constraints (7) to (13): 

 
Min  
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s.t. Constraints (7) to (13). 
 
Because the range of deviations computed by the 

objective function is different for each DMU, it is nec-
essary to normalize it by using relative deviations rather 
than absolute ones. Hence, the normalized deviations 
can be computed by:  

* *
min

*
min

( ) ( )( )
( )

k k
k

k

Z Z
Z
θ θθ

θ
−

Δ = ,  (22)  

 
where )(* θkZ  is the optimal value of the objective func-
tion for min max.θ θ θ≤ ≤  We define )(θkΔ  as a measure of 
closeness which represents the relative closeness of each 
DMU to its priority weight in the range [0, 1]. Increas-
ing the parameter )(θ , we improve the deviations be-
tween the two systems of weights obtained from the 
three-level DEA model before and after adding the two 
sets of constraints (19) and (20). This may lead to dif-
ferent ranking positions for each DMU in comparison to 
the other DMUs. It should be noted that in a special case 
where the parameter max 0,θ θ= =  we assume )(θkΔ = 1.  

3.  A NUMERICAL EXAMPLE:  
ROAD SAFETY PERFORMANCE 

In this section we present the application of the 
proposed approach to assess the road safety performance 
of a set of European countries (or DMUs).The data on 
13 road safety performance indicators (SPIs) in terms of 
road user behavior (inputs) and 4 safety outcomes (out-
puts) for 19 European countries have been adopted from 
Shen et al. (2011). The resulting normalized data based 
on (1) and (2) are presented in Table 1.The notations in 
Table 1 are as follows: AT = Austria, BE = Belgium, CZ 
= Czech Republic, DK = Denmark, FR = France, DE = 
Germany, EL = Greece, HU = Hungary, IE = Ireland, LV 
= Latvia, LU = Luxembourg, NL = Netherlands, PL = 
Poland, PT = Portugal, SI = Slovenia, ES = Spain, SE = 
Sweden, CH = Switzerland, UK = United Kingdom. 

Since in DEA-based road safety models, the most 
efficient countries are those with minimum output levels 
given input levels, we treat all the outputs (inputs) as 
inputs (outputs) (Shen et al., 2012). Tables 2 and 3 depict 
the priority weights of safety outcomes and SPIs as con-
structed by the author in Expert Choice software. One can 
argue that the priority weights of SPIs must be judged 
by road safety experts. However, since the aim of this 
section is just to show the application of the proposed 
approach on numerical data, we see no problem to use 
our judgment alone. 

Solving the three-level DEA model for the country 
under assessment, we obtain an optimal set of weights 
with minimum efficiency loss min( ).θ  It should be noted 
that the efficiency value of all countries calculated from 
the three-level DEA model is identical to that calculated 
from the CCR-DEA model. Therefore, the minimum effi-
ciency loss for the country under assessment is min 0θ =  

(Table 4). This implies that the measure of relative clo-
seness to the AHP weights for the country under as-
sessment is min( ) 0.k θΔ =  On the other hand, solving the 
three-level DEA model for the country under assessment 
after adding the two sets of constraints (19) and (20), we 
adjust the priority weights of SPIs (outputs) and safety 
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Table 1. Normalized data on SPIs (outputs) and safety outcomes (inputs) for 19 european countries 

Outputs 
Alcohol Speed Protective systems 

Mean speed % of Speed limit violation Non-use of seat belt Countries* 
% of 

Fatalities 
On 

urban 
roads 

On 
rural 
roads 

On 
motor- 
ways 

On 
urban 
roads 

On 
rural 
roads 

On 
motor- 
ways 

In 
front 
seats 

In 
rear 
seats 

AT 0.107 0.965 0.810 0.911 0.913 0.387 0.446 0.275 0.680 
BE 0.181 0.948 0.888 0.931 0.816 0.649 0.604 0.550 0.800 
CZ 0.059 0.835 0.681 0.822 0.495 0.346 0.696 0.275 0.787 
DK 0.276 0.857 0.760 0.927 0.643 0.486 0.602 0.375 0.493 
FR 0.472 0.835 0.793 0.941 0.585 0.435 0.733 0.050 0.240 
DE 0.197 0.849 0.872 0.935 0.689 0.448 0.575 0.125 0.160 
EL 0.150 0.803 0.838 0.949 0.668 0.511 0.585 1.000 1.000 
HU 0.150 0.983 0.698 0.954 0.934 0.188 0.588 0.825 0.880 
IE 0.309 0.904 0.845 0.901 0.709 0.493 0.268 0.350 0.720 
LV 0.375 0.783 0.828 0.887 0.690 0.457 0.611 0.575 0.907 
LU 0.179 0.892 0.795 0.911 0.675 0.487 0.089 0.500 0.533 
NL 0.432 0.870 0.857 0.950 0.770 0.494 0.723 0.250 0.480 
PL 0.149 1.000 0.819 0.826 1.000 0.672 0.608 0.650 0.733 
PT 0.176 0.783 1.000 1.000 0.522 1.000 0.964 0.350 0.733 
SI 1.000 0.913 0.809 0.949 0.654 0.532 0.543 0.450 0.680 
ES 0.354 0.866 0.831 0.976 0.702 0.479 0.561 0.275 0.413 
SE 0.278 0.943 0.853 0.990 0.706 0.487 0.607 0.100 0.267 
CH 0.333 0.748 0.810 0.921 0.247 0.333 0.518 0.450 0.627 
UK 0.294 0.826 0.776 1.000 0.515 0.378 1.000 0.225 0.213 

 
Table 1. Continued 

Outputs Inputs 
Protective systems Casualties Crashes 

% of Non-use of helmet Country % of  
non-use of 

Child 
restraint 

Cyclists Moped 
riders 

Motor- 
cyclists 

No of 
fatalities 

No of  
serious  
injuries 

No of 
soft  

injuries 

No of  
crashes 

AT 0.310 0.849 0.450 0.522 0.451 1.000 0.651 0.551 
BE 0.362 0.880 0.419 0.390 0.554 0.382 0.641 0.454 
CZ 1.000 0.871 0.328 0.496 0.641 0.246 0.327 0.249 
DK 0.429 1.000 0.308 0.593 0.402 0.377 0.086 0.113 
FR 0.190 0.872 0.038 0.800 0.408 0.410 0.140 0.147 
DE 0.276 0.978 0.654 1.000 0.326 0.601 0.578 0.455 
EL 0.398 0.851 0.373 0.618 0.783 0.107 0.214 0.155 
HU 0.351 0.877 0.337 0.382 0.668 0.531 0.256 0.229 
IE 0.413 0.873 0.392 0.488 0.457 0.136 0.228 0.154 
LV 0.370 0.888 1.000 0.600 1.000 0.183 0.320 0.234 
LU 0.741 0.883 0.416 0.446 0.522 0.391 0.289 0.222 
NL 0.483 0.874 0.269 0.411 0.234 0.387 0.169 0.176 
PL 0.241 0.883 0.320 0.000 0.793 0.276 0.165 0.145 
PT 0.380 0.887 0.355 0.307 0.500 0.185 0.544 0.371 
SI 0.367 0.870 0.433 0.601 0.788 0.421 1.000 0.644 
ES 0.347 0.870 0.269 0.200 0.462 0.282 0.367 0.250 
SE 0.086 0.785 0.385 0.200 0.277 0.274 0.335 0.226 
CH 0.259 0.710 0.231 0.200 0.370 0.480 0.411 1.000 
UK 0.121 0.875 0.412 0.450 0.272 0.310 0.493 0.344 
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Table 2. The AHP hierarchical model for road safety outcomes (inputs) 

Objective level Criteria level Sub-criteria level Sub sub-criteria level 
Fatalities 
11e′ = 0.667 

Fatalities 
111f ′ = 1.00 

Serious injuries 
12e′ = 0.222 

Serious injuries 
121f ′ = 1.00 

 
 

Prioritizing road 
safety outcomes 

(inputs) 

Injuries 
1w′ = 0.75 

Slight injuries 
13e′ = 0.111 

Slight injuries 
131f ′ = 1.00 

 
Crashes 

2w′ = 0.25 
Crashes 
21e′ = 1.00 

Crashes 
211f ′ = 1.00 

 
Table 3. The AHP hierarchical model for SPIs (outputs) 

Objective level Criteria level Sub-criteria level Sub sub-criteria level 

Alcohol 
1w = 0.2667 

Fatalities involving at least one  
driver impaired by alcohol 

11e = 1.000 

Fatalities involving at least one driver 
 impaired by alcohol 

111f = 1.000 
Mean speed of vehicles on 

urban roads 
211f = 0.333 

Mean speed of vehicles on rural roads, 
212f = 0.267 

Mean speed 
21e = 0.40 

Mean speed of vehicles on motorways 
213f = 0.40 

% of vehicles exceeding the speed  
limit on urban roads 

221f = 0.267 
% of vehicles exceeding the speed  

limit on rural roads 
222f = 0.333 

Speed 
2w = 0.40 

Speed limit 
violations 

22e = 0.60 
% of vehicles exceeding the speed  

limit on motorways 
223f = 0.40 

Seatbelt in front seats 
311f = 0.60 Seat belt 

31e = 0.333 Seatbelt in rear seats 
312f = 0.40 

Child restraints 
32e = 0.267 

Child restraints 
321f = 1.000 

Helmet by cyclists 
331f = 0.40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prioritizing road  
user behavior 

(outputs)  
 

Protective systems 
3w = 0.333  

 
Helmet 
33e = 0.40 

Helmet by moped riders 
332f = 0.333 

   
Helmet by motorcyclists 

333f = 0.267 
 

outcomes (inputs) obtained from AHP in such a way 
that they become compatible with the weights’ structure 
in the three level DEA model. This results in the maxi-
mum efficiency loss, max ,θ  for the country under as-
sessment (Table 4). In addition, this implies that the 

measure of relative closeness to the AHP weights for the 
country under assessment is max( )k θΔ = 1.  

Table 5 presents the optimal weights of SPIs and 
safety outcomes as well as the scaling factors for the 
best performing country, the Netherlands. It should be  
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Table 4. Minimum and maximum efficiency losses for each country 

Countries *
kE  minθ  maxθ  

AT 0.8022 0.000 0.4684 
BE 0.9270 0.000 0.4792 
CZ 1 0.000 0.5455 
DK 1 0.000 0.2686 
FR 1 0.000 0.3272 
DE 1 0.000 0.5198 
EL 1 0.000 0.5057 
HU 1 0.000 0.5690 
IE 1 0.000 0.3098 
LV 1 0.000 0.5930 
LU 1 0.000 0.5014 
NL 1 0.000 0.0000 
PL 1 0.000 0.5612 
PT 1 0.000 0.4346 
SI 1 0.000 0.5697 
ES 0.8584 0.000 0.2838 
SE 1 0.000 0.2836 
CH 1 0.000 0.6561 
UK 1 0.000 0.3405 

 
Table 5. Optimal weights of SPIs and safety outcomes for the Netherlands obtained from the three-level DEA model 

bounded by AHP 

Weights of categories Weights of sub-categories Weights of sub sub-categories 

11q′ = 2.0882 111v′ = 2.0882 

12q′ = 0.6950 121v′ = 0.6950 1q = 3.1307 

13q′ = 0.3475 131v′ = 0.3475 

2q = 1.0436 21q′ = 1.0436 211v′ = 1.0436 

1p = 0.4669 11p′ = 0.4669 111u′ =  0.4669 

211u′ = 0.0933 

212u′ = 0.0748 21p′ = 0.2801 

213u′ = 0.1120 

221u′ = 0.1122 

222u′ = 0.1399 

 
 
 

2p = 0.7003 
22p′ = 0.4202 

223u′ = 0.1681 

311u′ = 0.1165 
31p′ = 0.1941 

312u′ = 0.0777 

32p′ = 0.1557 321u′ = 0.1557 

331u′ = 0.0933 

332u′ = 0.0777 

3p = 0.5830 

33p′ = 0.2332 

333u′ = 0.0623 

α =  1.7507 and β = 4.1743 
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noted that the priority weights of AHP used for incorpo-
rating weight bounds on the weights of safety outcomes 

and SPIs are obtained as 
hh i

hh i
vv
β

′
′

′
=  and ,ll r

ll r
uu
α
′

′

′
=  respec-

tively. In addition, the priority weights of safety out-
comes in the AHP model can be obtained as follows: 

h
h

qw
β

′ =  while 

1 1

M m

hh i h
h i

v q
′

′
′= =

′ =∑∑ and 

1

m

hh i hh
i

v q′ ′
=

′ ′=∑ for criteria 

level, 
hh hh he q q′ ′′ ′= for sub-criteria level, 
hh i hh i hhf v q′ ′ ′′ ′ ′= for sub-sub-criteria levels. 

Similarly, the priority weights of SPIs in the AHP model 
can be obtained as follows: 

l
l

pw
α

=  while 

1 1

S s

ll r l
l r

u p
′

′
′= =

′ =∑∑ and 

1

s

ll r ll
r

u p′ ′
=

′ ′=∑ for criteria 

level, 
ll ll le p p′ ′′= for sub-criteria level, 
ll r ll r llf u p′ ′ ′′ ′= for sub-sub-criteria levels. 

 
Going one step further to the solution process of 

the parametric distance model (21), we proceed to the 
estimation of total deviations from the AHP weights for 
each country while the parameter θ  is max0 .θ θ≤ ≤  Table 
6 represents the ranking position of each country based on 
the minimum deviation from the priority weights of SPIs 
and safety outcomes for .0=θ  It should be noted that in 
a special case where the parameter max 0θ θ= =  we assume 

( ) 1.k θΔ =  
Table 6 shows that the Netherlands is the best per-

former in terms of the efficiency value and its relative 
closeness to the priority weights of SPIs and safety out-
comes. Nevertheless, increasing the value of θ  from 0 

to maxθ  has two main effects on the performance of the 
other countries: improving the degree of deviations and 
reducing the value of efficiency. This, of course, is a 
phenomenon, one expects to observe frequently. The 

 

 
Figure 1. The relative closeness to the priority weights of SPIs and safety outcomes [∆ (θ)], versus efficiency loss (θ) for 

each country. 

Table 6. The ranking position of each country based on 
the minimum distance to priority weights of 
SPIs and safety outcomes 

Countries *( )Z η  Rank 
AT 0.6811 13 
BE 0.7685 16 
CZ 0.6024 10 
DK 0.6663 12 
FR 0.5613 9 
DE 0.5239 7 
EL 0.4294 2 
HU 0.8174 18 
IE 0.5366 8 
LV 0.5048 4 
LU 0.7871 17 
NL 0.0000 1 
PL 0.6998 14 
PT 0.4907 3 
SI 0.5225 6 
ES 1.3648 19 
SE 0.6111 11 
CH 0.7225 15 
UK 0.5156 5 
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graph of ( )θΔ  versus ,θ  as shown in Figure 1, is used to 
describe the relation between the relative closeness to 
the priority weights of SPIs and safety outcomes, versus 
efficiency loss for each country. This may result in dif-
ferent ranking positions for each country in comparison 
to the other countries (Appendix A). 

4.  CONCLUSION 

We develop an integrated approach based on DEA 
and AHP methodologies for hierarchical structures of 
inputs and outputs. We define two sets of weights of 
inputs and outputs in a three-level DEA framework. The 
first set represents the weights of inputs and outputs 
with minimum efficiency loss. The second set represents 
the corresponding priority weights of hierarchical inputs 
and outputs, using AHP, with maximum efficiency loss. 
We assess the performance of each DMU in comparison 
to the other DMUs based on the relative closeness of the 
first set of weights to the second set of weights. Improv-
ing the measure of relative closeness in a defined range 
of efficiency loss, we explore the various ranking posi-
tions for the DMU under assessment in comparison to 
the other DMUs. To demonstrate the effectiveness of the 
proposed approach, an illustrative example of road safety 
performance of a set of 19 European countries is carried 
out. 
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Appendix A. The measure of relative closeness to the priority weights of hierarchical SPIs and safety outcomes [ ( )]Δk θ  vs. 
composite loss [θ] for each country* 

θ AT BE CZ DK FR DE EL HU IE LV 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Rank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

0.02 0.0341 0.1029 0.0315 0.0727 0.0692 0.0302 0.0341 0.1654 0.0686 0.0323 

Rank 14 4 16 6 7 17 13 3 8 15 

0.04 0.0987 0.2085 0.0957 0.2202 0.2084 0.0920 0.1038 0.2731 0.2082 0.0967 

Rank 14 6 16 5 7 17 13 3 8 15 

0.06 0.1335 0.2562 0.1286 0.2941 0.2774 0.1240 0.1395 0.3198 0.2787 0.1283 

Rank 14 8 15 5 7 17 13 4 6 16 

0.08 0.1701 0.3000 0.1621 0.3684 0.3451 0.1569 0.1758 0.3621 0.3492 0.1595 

Rank 14 9 15 4 7 17 13 5 6 16 

0.1 0.2079 0.3392 0.1962 0.4427 0.4104 0.1907 0.2125 0.3961 0.4193 0.1906 

Rank 14 9 15 4 6 16 13 7 5 17 

0.12 0.2461 0.3752 0.2307 0.5168 0.4727 0.2254 0.2497 0.4249 0.4880 0.2216 

Rank 14 9 15 4 6 16 13 7 5 17 

0.14 0.2861 0.4100 0.2656 0.5914 0.5319 0.2610 0.2875 0.4501 0.5545 0.2523 

Rank 14 9 15 4 6 16 13 8 5 17 

0.16 0.3292 0.4432 0.3011 0.6665 0.5898 0.2973 0.3257 0.4753 0.6167 0.2827 

Rank 13 9 15 4 6 16 14 8 5 17 

0.18 0.3753 0.4751 0.3371 0.7418 0.6468 0.3345 0.3644 0.5007 0.6753 0.3128 

Rank 13 9 15 4 6 16 14 8 5 17 

0.2 0.4224 0.5073 0.3736 0.8172 0.7024 0.3725 0.4035 0.5265 0.7341 0.3424 

Rank 12 9 15 3 6 16 14 8 5 17 

0.22 0.4668 0.5403 0.4105 0.8926 0.7577 0.4113 0.4431 0.5527 0.7931 0.3727 

Rank 12 9 16 3 6 15 14 8 5 17 

0.24 0.5089 0.5743 0.4478 0.9677 0.8133 0.4509 0.4831 0.5793 0.8523 0.4036 

Rank 12 10 16 2 6 15 14 8 5 17 

0.26 0.5514 0.6094 0.4855 1.0000 0.8688 0.4912 0.5235 0.6061 0.9116 0.4352 

Rank 12 9 16 2 6 15 13 10 5 18 

0.28 0.5956 0.6454 0.5233 1.0000 0.9244 0.5322 0.5643 0.6332 0.9710 0.4675 

Rank 12 9 16 1 6 15 13 11 5 18 

0.3 0.6414 0.6824 0.5613 1.0000 0.9800 0.5738 0.6054 0.6605 1.0000 0.5004 

Rank 12 9 16 1 6 15 13 11 1 18 

0.32 0.6881 0.7203 0.5994 1.0000 1.0000 0.6158 0.6469 0.6879 1.0000 0.5339 

Rank 11 10 16 1 6 15 13 12 1 18 

0.34 0.7355 0.7589 0.6375 1.0000 1.0000 0.6582 0.6886 0.7152 1.0000 0.5680 

Rank 11 10 16 1 1 14 13 12 1 18 

0.36 0.7828 0.7983 0.6759 1.0000 1.0000 0.7008 0.7307 0.7424 1.0000 0.6028 

Rank 11 10 16 1 1 14 13 12 1 18 
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Appendix A. Continued 

θ AT BE CZ DK FR DE EL HU IE LV 

0.38 0.8308 0.8382 0.7145 1.0000 1.0000 0.7433 0.7730 0.7694 1.0000 0.6380 

Rank 11 9 16 1 1 14 12 13 1 18 

0.4 0.8798 0.8786 0.7533 1.0000 1.0000 0.7856 0.8156 0.7964 1.0000 0.6738 

Rank 9 10 16 1 1 14 12 13 1 18 

0.42 0.9293 0.9195 0.7924 1.0000 1.0000 0.8281 0.8583 0.8236 1.0000 0.7101 

Rank 9 10 16 1 1 13 12 14 1 18 

0.44 0.9792 0.9605 0.8316 1.0000 1.0000 0.8710 0.9013 0.8508 1.0000 0.7469 

Rank 9 10 16 1 1 13 12 14 1 18 

0.46 1.0000 1.0000 0.8709 1.0000 1.0000 0.9140 0.9444 0.8782 1.0000 0.7841 

Rank 9 10 15 1 1 13 12 14 1 18 

0.48 1.0000 1.0000 0.9103 1.0000 1.0000 0.9572 0.9876 0.9056 1.0000 0.8216 

Rank 1 1 14 1 1 13 12 15 1 18 

0.5 1.0000 1.0000 0.9497 1.0000 1.0000 1.0000 1.0000 0.9330 1.0000 0.8595 

Rank 1 1 14 1 1 13 1 15 1 18 

0.52 1.0000 1.0000 0.9891 1.0000 1.0000 1.0000 1.0000 0.9604 1.0000 0.8977 

Rank 1 1 14 1 1 1 1 16 1 18 

0.54 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9877 1.0000 0.9362 

Rank 1 1 1 1 1 1 1 16 1 18 

0.56 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9748 

Rank 1 1 1 1 1 1 1 1 1 18 

0.58 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 1 

0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 1 

0.62 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 1 

0.64 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 1 

0.66 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 1 
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Appendix A. Continued 

θ LU NL PL PT SI ES SE CH UK 

0 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Rank N/A 1 N/A N/A N/A N/A N/A N/A N/A 

0.02 0.0391 1.0000 0.0443 0.0400 0.0261 0.2616 0.0840 0.0282 0.0605 

Rank 12 1 10 11 19 2 5 18 9 

0.04 0.1179 1.0000 0.1352 0.1223 0.0817 0.4534 0.2546 0.0802 0.1790 

Rank 12 1 10 11 18 2 4 19 9 

0.06 0.1581 1.0000 0.1797 0.1648 0.1103 0.5163 0.3394 0.1037 0.2398 

Rank 12 1 10 11 18 2 3 19 9 

0.08 0.1988 1.0000 0.2218 0.2081 0.1415 0.5658 0.4220 0.1261 0.3013 

Rank 12 1 10 11 18 2 3 19 8 

0.1 0.2399 1.0000 0.2600 0.2522 0.1727 0.6146 0.5002 0.1484 0.3630 

Rank 12 1 10 11 18 2 3 19 8 

0.12 0.2813 1.0000 0.2943 0.2971 0.2045 0.6641 0.5732 0.1703 0.4241 

Rank 12 1 11 10 18 2 3 19 8 

0.14 0.3234 1.0000 0.3266 0.3425 0.2369 0.7142 0.6377 0.1915 0.4835 

Rank 12 1 11 10 18 2 3 19 7 

0.16 0.3663 1.0000 0.3581 0.3885 0.2696 0.7637 0.6963 0.2118 0.5404 

Rank 11 1 12 10 18 2 3 19 7 

0.18 0.4099 1.0000 0.3896 0.4348 0.3028 0.8112 0.7547 0.2309 0.5966 

Rank 11 1 12 10 18 2 3 19 7 

0.2 0.4540 1.0000 0.4215 0.4816 0.3361 0.8587 0.8132 0.2492 0.6528 

Rank 11 1 13 10 18 2 4 19 7 

0.22 0.4985 1.0000 0.4539 0.5286 0.3692 0.9058 0.8719 0.2676 0.7091 

Rank 11 1 13 10 18 2 4 19 7 

0.24 0.5435 1.0000 0.4868 0.5758 0.4023 0.9501 0.9307 0.2872 0.7659 

Rank 11 1 13 9 18 3 4 19 7 

0.26 0.5887 1.0000 0.5202 0.6229 0.4355 0.9921 0.9895 0.3082 0.8234 

Rank 11 1 14 8 17 3 4 19 7 

0.28 0.6339 1.0000 0.5539 0.6703 0.4689 1.0000 1.0000 0.3308 0.8813 

Rank 10 1 14 8 17 1 1 19 7 

0.3 0.6787 1.0000 0.5879 0.7182 0.5024 1.0000 1.0000 0.3550 0.9397 

Rank 10 1 14 8 17 1 1 19 7 

0.32 0.7226 1.0000 0.6221 0.7666 0.5360 1.0000 1.0000 0.3810 0.9984 

Rank 9 1 14 8 17 1 1 19 7 

0.34 0.7646 1.0000 0.6565 0.8154 0.5693 1.0000 1.0000 0.4087 1.0000 

Rank 9 1 15 8 17 1 1 19 7 

0.36 0.8035 1.0000 0.6911 0.8645 0.6038 1.0000 1.0000 0.4383 1.0000 

Rank 9 1 15 8 17 1 1 19 1 
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Appendix A. Continued 

θ LU NL PL PT SI ES SE CH UK 

0.38 0.8371 1.0000 0.7260 0.9139 0.6397 1.0000 1.0000 0.4698 1.0000 

Rank 10 1 15 8 17 1 1 19 1 

0.4 0.8692 1.0000 0.7611 0.9636 0.6770 1.0000 1.0000 0.5032 1.0000 

Rank 11 1 15 8 17 1 1 19 1 

0.42 0.9014 1.0000 0.7964 1.0000 0.7158 1.0000 1.0000 0.5387 1.0000 

Rank 11 1 15 1 17 1 1 19 1 

0.44 0.9336 1.0000 0.8316 1.0000 0.7561 1.0000 1.0000 0.5763 1.0000 

Rank 11 1 15 1 17 1 1 19 1 

0.46 0.9657 1.0000 0.8665 1.0000 0.7977 1.0000 1.0000 0.6160 1.0000 

Rank 11 1 16 1 17 1 1 19 1 

0.48 0.9977 1.0000 0.9004 1.0000 0.8407 1.0000 1.0000 0.6575 1.0000 

Rank 11 1 16 1 17 1 1 19 1 

0.5 1.0000 1.0000 0.9329 1.0000 0.8850 1.0000 1.0000 0.7008 1.0000 

Rank 1 1 16 1 17 1 1 19 1 

0.52 1.0000 1.0000 0.9655 1.0000 0.9305 1.0000 1.0000 0.7457 1.0000 

Rank 1 1 15 1 17 1 1 19 1 

0.54 1.0000 1.0000 0.9981 1.0000 0.9770 1.0000 1.0000 0.7917 1.0000 

Rank 1 1 15 1 17 1 1 19 1 

0.56 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8375 1.0000 

Rank 1 1 1 1 1 1 1 19 1 

0.58 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8810 1.0000 

Rank 1 1 1 1 1 1 1 19 1 

0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9228 1.0000 

Rank 1 1 1 1 1 1 1 19 1 

0.62 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9653 1.0000 

Rank 1 1 1 1 1 1 1 19 1 

0.64 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 

Rank 1 1 1 1 1 1 1 19 1 

0.66 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 

* AT = Austria, BE = Belgium, CZ = Czech Republic, DK = Denmark, FR = France, DE = Germany, EL = Greece, HU = Hungary, 
IE = Ireland, LV = Latvia, LU = Luxembourg, NL = Netherlands, PL = Poland, PT = Portugal, SI = Slovenia, ES = Spain, SE = 
Sweden, CH = Switzerland, UK = United Kingdom. 

 
 

 
 


