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ABSTRACT 

This paper considers a special case of a three machine flow shop scheduling problem in which operation processing 
time of each job is ordered such that machine 1 has the longest processing time, whereas machine 3, the shortest proc-
essing time. The objective of the problem is the minimization of the total completion time. Although the problem is 
simple, its complexity is yet to be established to our best knowledge. This paper first introduces the problem and pre-
sents some optimal properties of the problem. Then, it establishes several special cases in which a polynomial-time 
optimal solution procedure can be found. In addition, the paper proves that the recognition version of the problem is at 
least binary NP-complete. The complexity of the problem has been open despite its simple structure and this paper 
finally establishes its complexity. Finally, a simple and intuitive heuristic is developed and the tight worst case bound 
on relative error of 6/5 is established. 
 
Keywords: Three Machine Flow Shop, Computational Complexity, Total Completion Time 
 
* Corresponding Author, E-mail: jyang@uos.ac.kr 

 
 

1.  INTRODUCTION 

This paper considers a special case of a three machine 
flow shop scheduling problem in which operation pro-
cessing time of each job is ordered such that machine 1 
has the longest processing time, whereas machine 3, the 
shortest processing time. The objective of the problem is 
the minimization of the total completion time. 

Although the flow shop scheduling problem has 
received much research attention over the last six decaades 
since the seminal work of Johnson (1954), there remain 
many variations of the problem of which com-plexity 
has not been established. Furthermore, many of them 
seem simple and easily solvable including the problem 
considered in this paper. 

The flow shops are common in a variety of indus-
tries where a sequential processing of raw materials is 
required, and typical instances can be found in industries 
with assembly process including consumer electronics, 
automobiles, and toys. The problem considered in this 

paper is a simple version of the real world problems, but 
findings in ths paper can be extend for a more practical 
situations. 

For a general introduction to the flow shop sche-
duling problem, see Baker and Trietch (2009) and Chen 
et al. (1999). In addition, for discussions about the com-
plexity of the flow shop scheduling problem, see Garey 
et al. (1979), Lenstra et al. (1977), and Chen et al. (1999). 

It is well known that the recognition version of two 
machine flow shop scheduling with the objective of mi-
nimizing the total completion time is unary NP-com-
plete (Garey et al., 1979). However, the two machine 
flow shop version of the problem in this paper, in which 
operation processing time of each job is ordered such 
that the processing time on machine 1 is no shorter than 
that on machine 2, is solvable in )log( nnO  simply by 
ordering jobs in a nondecreasing order of processing 
times on machine 1 (Hoogeveen and Kawaguchi, 1999). 
The complexity of the two machine case implies that the 
three machine version of flow shop scheduling with the 
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objective of minimizing the total completion time is also 
unary NP-complete. However, to the authors’ knowledge, 
the complexity of the three machine version in which 
operation processing time of each job is ordered such 
that machine 1 has the longest processing time, whereas 
machine 3, the shortest processing time has been open. 
This paper establishes that the recognition version of 
this special case is at least binary NP-complete. 

Sections 2 and 3 introduce the notations and present 
some optimal properties of the problem, respectively. 
Section 4 establishes several special cases in which a 
polynomial-time optimal solution procedure can be found. 
Section 5 establishes the complexity of the problem. In 
Section 6, a simple and intuitive heuristic is introduced 
and it is shown that the heuristic’s worst case bound on 
relative error is 6/5 and the bound is tight. Finally, Sec-
tion 7 concludes the paper by summarizing the results 
and discussing some avenues for future research. 

2.  NOTATION 

The decision variables in our model are 
σ = schedule of all jobs 

iσ = schedule of jobs on machine i for 3}2,{1,∈i  
 
Other notation includes 
n = number of jobs 
N = set of jobs },2,{1,= nL  
M = set of machines at stage 1 },2,{1,= mL  

iM = machine i for Mi∈  
ijp = processing time of job j on iM  for Mi∈  and Nj∈  

)( ijC σ = completion time of job j on iM  in σ  for Mi∈  

and Nj∈  
)(σjC = completion time of job j in σ  for Nj∈  

)(σz = value of schedule .σ  
 
If there is no confusion, then we replace ,)(σjC  

,)( ijC σ  and )(σz  with ,, ijj CC  and z, respectively. We 
classify the problem according to the standard classi-
fication scheme for scheduling problems (Graham, 
Lawler, Lenstra, and Rinnooy Kan, 1979). In the three 
field notation of 1321 ,|| αααα  describes the machine 
structure, 2α  gives job characteristics and restrictions, 
and 3α  defines the objective. Following the standard 
scheduling classification scheme in Graham, Lawler, 
Lenstra, and Rinnooy Kan (1979), we refer to the pro-
blem of minimizing the total completion time in a three 
machine flow shop with ordered operation processing 
time such that machine 1 has the longest processing time, 
where as machine 3, the shortest processing time as  

.||3 321 jjjj CpppF ∑≥≥  

A schedule defines a job order for each machine, 
and in this paper, a permutation schedule is a schedule 
in which sequences of jobs for all 32,1,=i  are identical.  

For ,||3 321 jjjj CpppF ∑≥≥  jobs are available at the  

start of the planning process, and no preemptions are 
allowed. Lastly, the general analysis of the problem is 
similar to that in Yang (2013) and Yang (2015). 

3.  BASIC RESULTS 

This section establishes some properties of an opti-
mal schedule. The inserted idle time occurs if a machine 
is intentionally kept idle even if there is a job waiting. 
Since there are no restrictions that delay jobs, the 
following result is obtained. 

 

Lemma 1. For problem ,||3 321 jjjj CpppF ∑≥≥  there 

exists an optimal schedule without inserted idle time on 
iM  for .Mi∈  

 
Because of the following remark, we only consider 

a schedule with the same job sequence on the first two 
machines. 

 

Remark 1. For problem ,||3 jCF ∑  there exists an op-

timal schedule in which the same job sequence occurs 
on the first two machines. 
Proof. The result can be found in Baker and Trietsch 
(2009). □ 

 
The following remark establishes that the optimal 

schedule for problem ijjj CpppF ∑≥≥ ||3 321  may not 

be a permutation schedule. 
 

Remark 2. For problem ,||3 321 jjjj CpppF ∑≥≥  there 

exist an instance in which there is no optimal permu-
tation schedule. 
Proof. Consider the four job problems in which =11p  

,3== 3121 pp  ,4=== 141312 ppp  and =233222 == ppp  
.0=== 342433 ppp  Here the non-permutation optimal 

solution is ,4)3,2,(1,=1σ  ,4)3,2,(1,=2σ  and (2,=3σ  
.4)3,1,  The value of the optimal solution is 43. The best 

permutation schedule is ,4)3,2,(1,=σ  and its solution 
value is 44. □ 

 
As a result of Remark 2, there is a need to consider 

a non-permutation schedule as well as a permutation 
schedule as a candidate for an optimal schedule. The 
next lemma establishes a useful property of an optimal 
schedule for the analysis of the problem. 

 
Lemma 2. For problem ,||3 321 jjjj CpppF ∑≥≥  if there 
exists a permutation schedule in which (1) jobs are se-
quenced in nondecreasing jp1  and (2) for each job in N, 
there exists no delay between iM  and 1+iM  for ,21,=i  
then this schedule is optimal. 
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Proof. Note that a non-decreasing value of jp1  gene-
rates a schedule with the minimum .)( 11=

σj
n

j
C∑  Be-

cause there is no delay between iM  and 1+iM  for 1,=i  
,2  jjjj ppCC 211)(=)( ++σσ  for all .Nj∈  Therefore, the 

result holds.□ 

4.  SPECIAL CASES 

This section introduces some special cases, and for 
each case, a polynomial-time optimal solution procedure 
is developed. The following result shows that if proces-
sing time on 3M  is shorter than the minimum proces-
sing time on 2M  for all jobs, then an optimal schedule 
can be easily obtained. 

 

Theorem 1. For problem ,||3 321 jjjj CpppF ∑≥≥  if 

}{min 23 jNjj pp ∈≤  for all ,Nj∈  then nondecreasing jp1  
is optimal. 
Proof. Hoogeveen and Kawaguchi (1999) prove that a 
sequence with nondecreasing jp1  is an optimal solution 

procedure for problem .||2 21 jjj CppF ∑≥  Because jp3  

,}{min 2 jNj p∈≤  the solution value of any schedule ,σ  

.)(=)(=)( 31=21=31= j
n

jj
n

jj
n

j
pCCz ∑∑∑ +σσσ  In addition, 

a sequence with nondecreasing jp1  generates the mi-

nimum )( 21=
σj

n

j
C∑  for the problem. Therefore, the re-

sult holds. □ 
 

Corollary 1. For problem ,||3 321 jjjj CpppF ∑≥≥  if 

33 = pp j  for all ,Nj∈  then nondecreasing jp1  is optimal. 
Proof. Because ,= 33 pp j  .}{min 23 jNj pp ∈≤  From The-
orem 1, the result holds. □ 

 
The next result establishes that if processing time 

on 2M  is less than half of the minimum processing time 
on 1M  for all jobs, then an optimal schedule can be 
easily found. 

 

Theorem 2. For problem ,||3 321 jjjj CpppF ∑≥≥  if 

}{min2 12 jNjj pp ∈≤  for all ,Nj∈  then nondecreasing jp1  
is optimal. 
Proof. Because ,}{min2 12 jNjj pp ∈≤  min32 Njjj pp ∈≤+  

}{ 1 jp  for all .Nj∈  This implies that a job completes at 

3M  no later than the completion time of the following 

job on .1M  Hence, the solution value of any schedule ,σ  

.)()(=)(=)( 321=131= jj
n

jjj
n

j
ppCCz ++∑∑ σσσ  Observe 

that a sequence with nondecreasing jp1  generates the 

minimum .)( 11=
σj

n

j
C∑  Therefore, the result holds. □ 

 
The following theorem establishes that if processing 

time on 1M  is the same for all jobs, then an optimal 
schedule can be easily obtained. 

 

Theorem 3. For problem ,||3 321 jjjj CpppF ∑≥≥  if 

11 = pp j  for all ,Nj∈  then nondecreasing jp2  is optimal. 
Proof. Because 11 = pp j  for all ,Nj∈  a sequence with 
nondecreasing jp2  generates a schedule in which there 
is no delay between iM  and 1+iM  for 21,=i  for all jobs. 
From Lemma 2, the result holds. □ 

 
A similar result can be established for the case in 

which processing time on 2M  is the same as follows. 
 

Theorem 4. For problem ,||3 321 jjjj CpppF ∑≥≥  if 

22 = pp j  for all ,Nj∈  then nondecreasing jp1  is op-
timal. 
Proof. Since 22 = pp j  for all ,Nj∈  a sequence with non-
decreasing jp1  generates a schedule in which there is no 
delay between iM  and 1+iM  for 21,=i  for all jobs. From 
Lemma 2, the result holds. □ 

5.  COMPLEXITY 

This section establishes that the recognition version 

of problem jjjj CpppF ∑≥≥ ||3 321  is at least binary 

NP-complete. Specifically, we show that problem is 
binary NP-complete by using the reduction from the 
following binary NP-complete problem. 

 
Even-Odd Partition (Garey and Johnson, 1979): Given 
a set of l2  positive integers },,,{= 221 lL aaaA  such that 

,<<< 221 lL aaa  does there exist a partition of A into 

two subsets 1A  and 2A  such that ∑∑ ∈∈ 21
=

AjaiAja
a  

,ia  and such that for each ,1 l≤≤ j  1A  contains exactly 

one of ?},{ 212 jj aa −  

 
Theorem 5. The recognition version of problem 3F  

jjjj Cppp ∑≥≥ || 321  is at least binary NP-complete. 

Proof. For notational convenience, let /2=
2

1=
⎟
⎠
⎞

⎜
⎝
⎛∑ jj

ab
l

, 

j
j

j abr +−1)/2(2=  for ,12,3,1,= −lLj  j
j

j abr +−1/22=  for 

,2,4,2,= lLj  bs j
j

1)/2(22= +−l
 for ,,321,2= Lll ++j  

,14 −l  bs j
j

/222= −l
 for ,4,4,22,2= lLll ++j  ×l2=L  
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,100b  and .2= 2
2

1= jj
sLW +∑− l

l
l  Given an instance of 

Even-Odd Partition, we construct the following instance 

of problem :||3 321 jjjj CpppF ∑≥≥  

 
n = ,24 +l  

,3=m  
,1 Lp j =  ,2,2,1,= lLj  

,2 bLp j −= ,21,=j  

jp2 = ,jrL − ,2,4,3,= lLj  

jp3 = ,jsL − ,32,1,=i ,4,2,21,2= lLll ++j  

jip +l,2 = ,jsL − ,32,1,=i ,4,2,21,2= lLll ++j  

11,4 +lp = ,ε−L  

12,4 +lp = ,2 1

1=
ε+−− −∑ bbL j

j

l
 

,013,4 =+lp  

21,4 +lp = ,22 1

1=
bbL j

j
−− −∑l

 

,02,4 =+lip ,32,=i  

z = bLW 3)2(3)(22 +−++ llll bj j
j

3.5)2(
1=

++−∑ l
l

,1)())(( 2121=
ε+−+−− −∑ ll

l

jjj
aaj  

 
where ε  is a small positive number. 

The recognition version of problem jj ppF 21|3 ≥  

jj Cp ∑≥ |3  is in NP because jC∑  can be calculated 

in polynomial time. 
Now it is proved that there exists a solution to 

Even-Odd Partition if and only if there exists a solution 

to problem jjjj CpppF ∑≥≥ ||3 321  with .zC j ≤∑  

(⇒ ) We assume without loss of generality that if 
there exists a solution to Even-Odd Partition, then ele-

ments are indexed such that jjjj
aa 21=121=

=∑∑ −
ll

b=  

for .,2,1,= lLj  Consider permutation schedule σ  shown 

in Figure 1, where 
 

1,2,3,1,,4,2,21,(2= −++ lLlLllσ     (1) 
2)4,2,4,2,1,4 ++ llLl  

and there is no inserted idle time. Note that in ,σ  there 
is no idle time on 3M  between jobs 12 −j  and 12 +j  

and between jobs j2  and 22 +j  for 1,2,1,= −lLj  be-

cause of the structure of processing times of the jobs. In 
addition, because jobs j+l2  and 12 ++ jl  are identical 
for ,1,2,1,= −lLj  there exists no idle time between 

these two jobs. Finally, since there exists a solution to 
Even-Odd Partition, there exists no idle time on 3M  bet-

ween jobs 12 −l  and 14 +l  and between jobs l2  and 
.24 +l  Observe that the completion time of job l4  on  

.=2==)(, 2
2

1=1
4

12=141 WsLpCM jjjj ++ ∑∑ − l

ll

l
l lσ  Then, 

we calculate the total completion time as follows. 
 

2414

4

12=

2

1=

12

1=

24

1=

= ++
+

−

+

++++ ∑∑∑∑ ll

l

l

lll

CCCCCC j
j

j
j

j
j

j
j

  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−++ −∑∑ 12

1=1=

2)(= k

j

kj

rbLjW
l

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−++++ ∑∑ εk

j

kj

rbLjW 2

1=1=

3)(l
l

 

}323){(4 2222

1=1=

jk

j

kj

ssLj ++ −−++ ∑∑ ll

l

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−+++ −∑ 12

1=

2)( j
j

rbLW
l

l

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−+++ ∑ εj
j

rbLW 2

1=

3)(2
l

l  

bLW 1)2(11)(41)2(= +−+++ llll

)1)(( 212

1=

jj
j

rrj ++−− −∑ l

l

 

)( 212

1=

jj
j

rr +− −∑
l

ε1)(}31){4( 2222

1=

+−++−− ++∑ ll ll

l

jj
j

ssj  

1M

2M

3M

2l 2l 2l

2l2l 2l

2l2l 2l

2l

2l

2l

4l

4l

4l

4l

4l

4l

4l 4l2l

2l

2l

2+

2+2+

2+

2+ 2

2

2

1+

1+

1+ 1+

1+1−

1−1

1

1

1+

3+

3+

3+
• • •• • •• • •

 
Figure 1. An example of an optimal schedule. 
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bLW 1)2(11)(42= +−++ llll

)2)(2( 212

1=

jj
j

j

aabj +++−− −∑ l

l

 

ε1)(3}21)2{4(
1=

+−++−− −−∑ ll ll
l

bj jj

j

 

bjbLW j

j

3.5)2(3)2(11)(42=
1=

++−+−++ ∑ lllll

l

 

ε1)())(( 212

1=

+−+−− −∑ ll

l

jj
j

aaj  

.= z  
 
( ⇐ ) Let .}4,2,21,{2=1 lLll ++I  In addition, if 

there exists a solution to Even-Odd Partition, then we 
assume that elements in set 1A  and 2A  are partitioned 

into sets 2I  and ,3I  respectively and that they are 

reindexed such that 1}2,3,{1,=2 −lLI  and 4,{2,=3I  

.}2, lL  Because each job in 1I  has an identical proces-

sing time on each of the three machines and its pro-
cessing time increases with an increase in the index, it 
can be seen that in an optimal schedule, jobs in 1I  are 

processed in their index order. Here an optimal schedule 
is described first. Then, we show that a schedule does 
not have a solution value z≤  unless it is optimal. 

From Lemma 2, we try to find a permutation sche-
dule satisfying the two conditions in the lemma. If a 
schedule that meets these conditions cannot be found, 
then it is the best to find a schedule with the least viola-
tion of the two conditions in terms of the solution value. 

First, note that processing time of job 22 +l  on 

1M  is ,22 1

1=
bbL j

j
−− −∑l

 which is substantially longer 

than that of all other jobs. Hence, it can be seen that it is 
optimal to schedule job 24 +l  last. 

Next, observe that processing times of jobs in 1I  

on 1M  are shorter than other jobs by at least b. Hence, 

we start constructing an optimal schedule by scheduling 
all jobs in 1I  first in their index order. Note that because 

each job in 1I  has the identical processing time on all 

three machines and the processing time increases with 
an increase in the index, each job in 1I  can be processed 

without any delay between iM  and 1+iM  for .21,=i  

If some other jobs are scheduled before or between 
jobs in ,1I  then the solution value increases in compa-

rison to a schedule in which all jobs in 1I  are scheduled 

first. This is because jobs in 1I  have shorter processing 

times on 1M  than other jobs. Recall that except for jobs 

14 +l  and ,24 +l  jobs in 2I  and 3I  have the same pro-

cessing time on ,1M  that is, L. Also, recall that =11,4 +lp  

.LL ≈− ε  First, consider job 14 +l  which has the shor-
test total processing time as job 24 +l  does. Note that 
only way to schedule job 14 +l  without any delay bet-
ween iM  and 1+iM  for 21,=i  is to process job 14 +l  

first. However, in comparison to a schedule that sche-
dules job 14 +l  after jobs in ,1I  as in schedule (1), this 

increases the solution value by about 11,4
2

1=
( +∑ l

l
p

j
 

,22=)
1=1,2 bp j

jj
−

+ ∑− ll

l  which is the sum of processing 

time gaps on 1M  between job 14 +l  and each job in .1I  

Now, if job 14 +l  is scheduled after job ,22 +l  then 
the delay between 2M  and 3M  for job 14 +l  is ++22,2lp  

)2(222=)( 1

1=

1
13,411,423,2 bLbLppp j

j
−−

+++ ∑−−−+−
ll

lll

.2= 2

1=
bj

j
−∑l

 In addition, there is an increase in the 

solution value from the early processing of the job with 
a longer processing time on 1M  than jobs in .1I  Hence, 

it is optimal to schedule job 14 +l  after jobs in 1I  if a 

schedule with no delay or a shorter delay between 2M  

and 3M  cannot be found. 

Next, consider job 12 −l  or l2  with the shortest 
total processing time among remaining jobs except for 
jobs 14 +l  and .24 +l  Note that the best way to sche-
dule, for example, job 12 −l  without any delay between 

iM  and 1+iM  for 21,=i  is to process job 12 −l  after 

job .22 +l  However, in comparison to a schedule that 
schedules job 12 −l  after jobs in ,1I  as in schedule (1), 

this increases the solution value by about bj
j

−∑ ll
22

2=
 

,2=
1

1=
bj

j
−−∑ ll

 as in the case of job .14 +l  There is ano-

ther way to schedule 12 −l  with a small delay between 

2M  and ,3M  that is, .12 −la  In other words, job 12 −l  

can be scheduled after job 42 +l  with a delay of 12 −la  

between 2M  and ,3M  but then this increases the solution 

value by about bb j
j

j
j

−−− ∑∑ llll
2=22

1

2=3=
 in compa-

rison to a schedule, in which job 12 −l  is processed after 
jobs in ,1I  as in schedule (1). Note that this increase is 

smaller than that for scheduling job 12 −l  after job 

.22 +l  In addition, if job 12 −l  is scheduled after job 

,62 +l  then the delay between 2M  and 3M  is ε+−1(2l  

.)2 2 b−− l
 Hence, it is optimal to schedule job 12 −l  after 

jobs in 1I  if a schedule with no delay or a shorter delay 

between 2M  and 3M  cannot be found. 
This procedure can be repeated to calculate the in-

crease in the solution value or the delay between 2M  
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and 3M  for all remaining jobs in 2I  and .3I  
Now consider schedule (1). Note that the comple-

tion time of job 12 −l  in (1) is −++− LWC 2)(=12 ll  

.22)(= 121=

1

1=121= −
−

− ∑∑∑ −−++ jj
j

jjj
abLWr

lll
l  This 

implies that job 12 −l  is delayed after it is scheduled on 

2M  by +−+− −−
−

−
−

−
− ∑∑ babrr j

jjj
11

1=12
1

12
1

1=12 (22=
l

l
ll

l  

)12 −ja  before it is processed on .3M  Note that this delay 

is smaller than ,2
1

2=
bj

j
−−∑ ll

 which is the increase in the  

solution value for scheduling job 12 −l  after job .42 +l  

In addition, this delay is shorter than ,)2(2 21 b−− −+ ll ε  

which is the delay for scheduling job 12 −l  after job 
.62 +l  Similarly, job l2  in schedule (1) has almost the 

same delay as job .12 −l  
Observe that if jobs 12 −l  and 14 +l  are scheduled 

as in schedule (1), then it is possible that job l2  is sche-
duled right after job 14 +l  without any delay between  

2M  and .3M  However, this increases the delay of job 

24 +l  between 2M  and 3M  by about l
l

l 2
1

2 2= abr +−  

because .2= 2
1

3,2 l
l

l abLp −− −
 Note that the delay between 

2M  and 3M  created by scheduling job l2  right before 

job ,24 +l  as in schedule (1), is only =2
1

1=2 jj
rr ∑ −

−
l

l  

.)(22 2
11

1=2
1

j
j

j
aa +−+ −−− ∑l

l
l

 Hence, in an optimal sche-

dule, job l2  is not scheduled after job .14 +l  
This argument can be repeated for all remaining 

jobs in 2I  and .3I  In addition, the same argument can 

be used to show that jobs in 2I  and jobs in 3I  are sepa-

rated by job 14 +l  in the job sequence. 
As for a sequence among jobs in ,2I  scheduling job 

1 right after job l4  does not create any delay between 

2M  and .3M  If job 3 is scheduled right after job l4  

instead of job 1, then it generates a delay of 1a  for job 3 
between 2M  and .3M  In addition, it can be seen that it 
creates a delay of 11 = abr +  for jobs 141,2,7,5, +− llL  

in comparison to a schedule in which job 3 is scheduled 
right after job 1, as in schedule (1). Alternatively, if job 
3 is scheduled right after job 1, which is scheduled right 
after job ,4l  then a delay of bababrr =)(2= 1313 +−+−  

13 aa −+  is created for job 3, which is smaller than the 
increase in the solution value for the other case. Hence, 
it is better to schedule job 3 after job 1. This argument 
can be repeated for all remaining jobs in 2I  to deter-
mine an optimal order for jobs in .2I  Similarly, the same 
argument can be used to sequence jobs in .3I  Therefore, 
it is optimal to schedule jobs in 2I  and 3I  as in sche-
dule (1). 

Job 14 +l  in an optimal schedule should be sche-
duled as early as possible because it has a slightly shor-
ter processing time on 1M  than jobs in 2I  and 3I  as long 

as there is no delay between iM  and 1+iM  for .21,=i  

Hence, it is better to schedule job 14 +l  after job 12 −l  
than to schedule it after job .2l  Observe that the proces-

sing time of job 14 +l  on 2M  is .2 1

1=
ε+−− −∑ bbL j

j

l
 

Hence, job 14 +l  can be processed without any delay 
between 2M  and 3M  only if job 14 +l  is scheduled 

after job 12 −l  and .121=
ba jj

≥−∑l
 Similarly, the pro-

cessing times of job 24 +l  on 1M  and 2M  are −L2  

bbj
j

−−∑ 1

1=
2

l
 and 0, respectively. Hence, job 24 +l  

can be processed without any delay between 2M  and 

3M  only if job 24 +l  is scheduled after job l2  and 

.21=
ba jj

≥∑l
 These two conditions can be satisfied si-

multaneously only if .== 121=21=
baa jjjj −∑∑ ll

 

Observe that the optimal schedule is the same as 
schedule (1). Hence, the solution value is the same as  

that for schedule (1). This is possible only if jj
a21=∑l

 

.== 121=
ba jj −∑ l

 That is, there exists a solution to Even-

Odd Partition. □ 

6.  HEURISTICS 

Since problem jjjj CpppF ∑≥≥ ||3 321  is at least  

binary NP-complete, it is impossible to develop a poly-
nomial time optimal solution procedure. Hence, it would 
be valuable to develop heuristics which can generate 
reasonanly good solution values. In this section, we in-
troduce a simple and intuitive heuristic, H and analyze 
the performance of the heuristic analytically. Specifi-
cally, we show that the worst case bound on relative 
error of the H is 6/5 and the bound is tight. 

6.1 Description of the Heuristic 

Heuristic H is based on a simple rule. It processes 
jobs in the SPT (Shortest Processing Time first) order of 

jp1  for ,,2,1,= nj L  and as a result it ensures that each 
job can be processed as early as possible. We briefly 
describe the H1 as follows. 

 
Heuristic H 
0. Reindex jobs so that 11,1 +≤ jj pp  for .1,2,1,= −nj L  
1. Schedule jobs n,2,1, L  as early as possible without 
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any unnecessary idle time in their index order. 
2. Calculate jC  for .,2,1,= nj L  

Output j
n

j
C∑ 1=

 and stop. 

 
Heuristic H runs in )log( nnO  time. The resulting 

solution is a permutation schedule where there is no in-
serted idle time on iM  for .32,1,=i  Let 

Hσ  be the 
schedule generated by Heuristic H and 

Hz  be the cost 
of schedule .Hσ  

6.2 A Lower Bound 

We establish a lower bound on the value of a sche-
dule and the lower bounds is used in the analysis of the 
heuristic. The following bound assumes that each job is 
processed as quickly as possible on iM  for .32,1,=i  
We let ][ j  indicate the job in the jth position in 
schedule σ  and 

Lz  be the cost of the lower bound. 
 

Lemma 3. 

).()(= 321

1=

1

1=

][

1=

jjj

n

j
j

n

j

L
j

n

j

ppppjnzC +++−≥ ∑∑∑  

 
Proof. If job ,1=j  then .= 3[1]2[1]1[1][1] pppC ++  Since 

each job is processed on each machine as quickly as 

possible, for each job ,},3,{2, nj L∈  +≥∑ ]1[

1=

][ k

j

k
j pC  

2[ ] 3[ ].j jp p+  Hence, if we add up ][ jC  for jobs ,,2,1, nL  

then 
 

)(1)( ]3[]2[

1=

]1[

1=

][

1=

jj

n

j
j

n

j
j

n

j

pppjnC +++−≥ ∑∑∑  

).()(= ]3[]2[]1[

1=

]1[

1=

jjj

n

j
j

n

j

ppppjn +++− ∑∑  

Therefore, ).()(= 321

1=

]1[

1=

jjj

n

j
j

n

j

L ppppjnz +++− ∑∑ □ 

6.3 Analysis of the Heuristic 

This section analyzes the H. Specifically, we esta-
blish the worst case bound on the relative error for the H 
and prove that the bound is tight. First, we assume 

11,1 +≤ jj pp  for .1,2,1,= −nj L  The following thoerem 
establishes that for the H, there exists a tight worst case 
bound on relative error. 

 
Theorem 6. 6/5/ * ≤zzH

 and this bound is tight. 
Proof. Since job 1 is the first job to be processed, 

.=)( 3121111 pppC H ++σ  Also, since there is no waiting 

time before iM  for 32,1,=i  in 
Hσ  and jjj ppp 321 ≥≥  

for nj ,3,2,= L , 
 

.},{max)( 313,21

1

1=

jjjk

j

k

H
j ppppC ++≤ −

−

∑σ     (2) 

 
If we add up )( H

jC σ  in (2) for jobs ,,2,1, nL  then  
 

},{max1)()( 13,2

1=

1

1=1=

−∑∑∑ ++−≤ jj

n

j
j

n

j

H
j

n

j

pppjnC σ  

.1)( 3

1=

3

1

1=

2

1=

1

1=

3

1=

j

n

j
j

n

j
j

n

j
j

n

j
j

n

j

ppppjnp ∑∑∑∑∑ ++++−≤+
−

(3) 

 
From Lemma 3 and since jobs are processed in their 
index order,  
 

)()(= 321

1=

1

1=

jjj

n

j
j

n

j

L ppppjnz +++− ∑∑  

).(1)(= 32

1=

1

1=

jj

n

j
j

n

j

pppjn +++− ∑∑         (4) 

 
Then, from (3) and (4) 
 

L

H
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n

jLH

z

C

zz

)(

=/ 1=
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)(1)(
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1
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1=
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)(32)(

1

32

1=

1

1

1=

1

2

1=

3

1

1=

jj

n

j
j

n

j
j

n

j

j

n

j

ppppjn

p

+++−−

+≤

∑∑∑

∑
−−
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6/5.≤         (5) 
 

The inequality (5) holds since j
n

jj
n

j
pp 2

1

1=1
1

1= ∑∑ −−
≥  

j
n

j
p3

1

1=∑ −
≥  and .11,1 −≥ nn pp  

We now prove that the bound is tight. Consider the 
instance where there are 2=n  jobs with processing times 

,0==,1= 312111 ppp  and .1=== 322212 ppp  Since 11p  
,= 12p  any job sequence can be generated by the H. 

Suppose that .1)(2,=Hσ  Then, the solution value is 
Hz  

.6=33= +  An optimal schedule 2)(1,=*σ  has solution 
value .5=41=* +z  Therefore, the relative error is 6/5 
and this shows that the bound is tight. □ 

7.  A SUMMARY AND FUTURE RESEARCH 

This paper explores problem ||3 321 jjj pppF ≥≥  

.jC∑  Specifically, the paper establishes the complexity 

of ,||3 321 jjjj CpppF ∑≥≥  which has been open, and 

presents a simple polynomial-time solution procedure 
for several of its special cases. The complexity of the 
problem has been open despite its simple structure and 
this paper finally establishes its complexity. With this 
result, future research can be focused more on develo-
ping heuristics. 

Also, a simple and intuitive heuristic, Heuristic H 
is introduced and it is shown that the H’s worst case 
bound on relative error is 6/5 and the bound is tight. 

Table 1 summarizes the work. The blank space in 
Additional Job Characteristics column implies no job re-
strictions. All cases assume problem ||3 321 jjj pppF ≥≥  

.jC∑  The table lists the theorem or corollary showing 

each complexity. 

Future research may consider some other special 

cases of problem .||3 jCF ∑  For instance, the complexity 

of problem jjjj CpppF ∑≤≤ ||3 321  is open to our best 

knowledge even though structure of the problem is as 
simple as the problem considered in this paper. A good 
starting point of the analysis can be problem ≤jpF 1|2  

,|2 jj Cp ∑  which can be solved in )log( 2 nnO  (Hoo-

geveen and Kawaguchi, 1999). In addition, additional 
heuristics should be developed for our problem because 
its complexity is established as binary NP-complete. 

The findings in ths paper can be used in a variety of 
industries where a sequential processing of raw materi-
als is required, and typical instances can be found in 
industries with assembly process including consumer 
electronics, automobiles, and toys. Even thoug the pro-
blem considered in this paper is simple, the results can 
be extend for a more practical situations 
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