DOI QR코드

DOI QR Code

A WEIGHTED GLOBAL GENERALIZED CROSS VALIDATION FOR GL-CGLS REGULARIZATION

  • Chung, Seiyoung (Department of Mathematics, Chungnam National University) ;
  • Kwon, SunJoo (Innovation Center of Engineering Education, Chungnam National University) ;
  • Oh, SeYoung (Department of Mathematics, Chungnam National University)
  • Received : 2016.01.08
  • Accepted : 2016.02.05
  • Published : 2016.02.15

Abstract

To obtain more accurate approximation of the true images in the deblurring problems, the weighted global generalized cross validation(GCV) function to the inverse problem with multiple right-hand sides is suggested as an efficient way to determine the regularization parameter. We analyze the experimental results for many test problems and was able to obtain the globally useful range of the weight when the preconditioned global conjugate gradient linear least squares(Gl-CGLS) method with the weighted global GCV function is applied.

Keywords

References

  1. J. Chung, J. G. Nagy, and D. P. O'Leary, A weighted GCV method for Lanczos hybrid regularization, Electronic Trans. on Numer. Anal. 28 (2008), 149-167.
  2. S. Y. Chung, S. Y. Oh, S. J. Kwon, Restoration of blurred images by global least squares method, J. of Chungcheong Math. Soc. 22 (2009), 177-186.
  3. P. C. Hansen, Analysis of Discrete Ill-Posed Problems by means of the L-Curve, SIAM Review, 34 (1992), 561-580. https://doi.org/10.1137/1034115
  4. P. C. Hansen, Rank-deficient and discrete ill-posed problems, SIAM, 1998.
  5. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
  6. P. C. Hansen, Regularization tools 4.0 for Matlab 7.3, Numerical Algorithms 46 (2007), no. 2, 189-194. https://doi.org/10.1007/s11075-007-9136-9
  7. M. R. Hesenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. of Research of the National Bureau of Standards, 49 (1952), 409-436. https://doi.org/10.6028/jres.049.044
  8. Y. Kim and C. Gu, Smoothing spline Gausian regression: More scalable computaiton via efficient approximation, J. Roy. Stat. Soc. 66 (2004), 337-356. https://doi.org/10.1046/j.1369-7412.2003.05316.x
  9. J. G. Nagy, K.apalmer, and L. Perrone, Iterative methods for image deblurring: a Matlab object oriented approach, Numer. Alg. 36 (2004), 73-93. https://doi.org/10.1023/B:NUMA.0000027762.08431.64
  10. M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comp. 21 (1999), no. 3, 851-866. https://doi.org/10.1137/S1064827598341384
  11. S. Y. Oh, S. J. Kwon, and J. H. Yun, Image restoration by the global conjugate gradient least squares method, J. Appl. Math. & Informatics 31 (2013), 353-363. https://doi.org/10.14317/jami.2013.353
  12. S. Y. Oh and S. J. Kwon, Preconditioned Gl-CGLS method using regularization parameters chosen from the global generalized cross validation, J. of Chungcheong Math. Soc. 27 (2014), 675-688. https://doi.org/10.14403/jcms.2014.27.4.675
  13. M. Rezghi and S. M. Hosseini, A new variant of L-curve for Tikhonov regularization, Journal of Computational and Applied Mathematics 231 (2009) 914-924. https://doi.org/10.1016/j.cam.2009.05.016
  14. G. Wahba, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14 (1977), 651-667. https://doi.org/10.1137/0714044

Cited by

  1. CHOOSING REGULARIZATION PARAMETER BY GLOBAL L-CURVE CRITERION vol.30, pp.1, 2016, https://doi.org/10.14403/jcms.2017.30.1.117