References
- Abdi, D. and Bitsuamlak, G. (2014a), "Numerical evaluation of the effect of multiple roughness changes", Wind Struct., 19(6), 585-601. https://doi.org/10.12989/was.2014.19.6.585
- Abdi, D. and Bitsuamlak, G. (2014b), "Wind flow simulations on idealized and real complex terrain using various turbulence models", Adv. Eng. Softw., 75, 30-41. https://doi.org/10.1016/j.advengsoft.2014.05.002
- Aboshosha, H., Bitsuamlak, G. and Damatty, A.E. (2015), "LES of ABL flow in the built-environment using roughness modeled by fractal surfaces", Sustainable Cities Soc., 19, 46-60. https://doi.org/10.1016/j.scs.2015.07.003
- Asghari, M. (2014), "Experimental and analytical methodologies for predicting peak loads on building envelopes and roofing systems", PhD thesis, Florida International University.
- Blocken, B. and Carmeliet, J. (2002), "Spatial and temporal distribution of driving rain on a low-rise building", Wind Struct., 5(5), 441-462. https://doi.org/10.12989/was.2002.5.5.441
- Blocken, B. and Carmeliet, J. (2004a), "Pedestrian wind environment around buildings: Literature review and practical examples", J. Therm. Envcir. Build. Phys., 28(2), 107-159. https://doi.org/10.1177/1097196304044396
- Blocken, B. and Carmeliet, J. (2004b), "A review of wind-driven rain research in building science", J. Wind Eng. Ind. Aero., 92(13), 1079-1130. https://doi.org/10.1016/j.jweia.2004.06.003
- Blocken, B., Janssen, W. and Hooff, T. (2011), "CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven university campus", Environ. Model. Softw., 28, 15-34.
- Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmospher. Envir. 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
- Blocken, B., Stathopoulos, T., Carmeliet, J. and Hensen, J. (2011), "Application of CFDin building performance simulation for the outdoor environment: an overview", J. Build. Perform. Simulation 4(2), 157-184. https://doi.org/10.1080/19401493.2010.513740
- CEDVAL-LES (2011), "Compilation of experimental data for validation of micro-scale dispersion models", Meteorological Institute, University of Hamburg, Germany. URL: http://www.mi.zmaw.de/index.php?id=6339
- Counihan, J. (1971), "Wind tunnel determination of the roughness length as a function of the fetch and roughness density of three dimensional roughness elements", Atmospher. Envir. 5(8), 637-642. https://doi.org/10.1016/0004-6981(71)90120-X
- Davenport, A., Grimmond, C., Oke, T. andWieringa, J. (2000), "Estimating the roughness of cites and sheltered country", Proceedings of the 12th American Meteorological Society Conference On Applied Climatology.
- ESDU-82026 (1993), Strong winds in the atmospheric boundary layer, Part 1: hourly-mean wind speeds, Engineering Science Data Unit.
- Franke, J. and Hirsch, C. (2004), "Recommendations on the use of CFD in wind engineering", Proceedings of the International Conference in Urban Wind Engineering and Building Aerodynamics.
- Hall, D., Macdonald, R., Walker, S. and Spanton, A. (1996), "Measurements of dispersion within simulated urban arrays: A small scale wind tunnel study", BRE Client Report CR 178/96.
- Hansen, F. (1993), "Surface roughness lengths", ARL Technical Report U.S. Army, White Sands Missile Range, NM 88002-5501.
- Hargreaves, D. and Wright, N. (2007), "On the use of k-epsilon model in commercial CFD software to model the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95, 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
- Hertwig, D., Efthimiou, G., Bartzis, J. and Leitl, B. (2012), "CFD-RANS model validation of turbulent flow in a semi-idealized urban canopy", J. Wind Eng. Ind. Aerod., 111, 61-72. https://doi.org/10.1016/j.jweia.2012.09.003
- Huang, H., Ooka, R., Chen, H., Kato, S., Takahashi, T. and Watanabe, T. (2008), "CFD analysis on trafficinduced air pollutant dispersion under non-isothermal condition in a complex urban area in winter", J. Wind Eng. Ind. Aerod., 96(10), 1774-1788. https://doi.org/10.1016/j.jweia.2008.02.010
- Lettau, H. (1969), "Note on aerodynamic roughness parameter estimation on the basis of roughness element description", J. Appl. Meteorol., 8(5), 828-833. https://doi.org/10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2
- Lo, A. (1990), "On the determination of zero-plane displacement height and roughness length for flow over forest canopies", Bound. Layer Meteorol., 51(3), 225-268.
- MacDonald, R., Griffiths, R. and Hall, D. (1998), "An improved method for the estimation of surface roughness of obstacle arrays", Atmos. Environ., 32(11), 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
- Martinez, B. (2011), "Wind resource in complex terrain with openfoam", Master's thesis, Technical University of Denmark.
- Miller, C. and Davenport, A. (1998), "Guidelines for the calculation of wind speed ups in complex terrain", J. Wind Eng. Ind. Aerod., 74-76, 189-197. https://doi.org/10.1016/S0167-6105(98)00016-6
- OpenFOAM (2013), "Openfoam, the open source CFD toolbox". URL: http://www.openfoam.com/
- O'Sullivan, J., Archer, R. and Flay, R. (2011), "Consistent boundary conditions for flows within the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 99(9), 66-67.
- Revuz, J., Hargreaves, D. and Owen, J. (2013), "On the domain size for the steady-state cfd modelling of a tall building", Wind Struct., 15(4), 313-329. https://doi.org/10.12989/was.2012.15.4.313
- Richards, P. and Hoxey, R. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-epsilon turbulence model", J. Wind Eng. Ind. Aerod., 46, 145-153.
- Tang, W. and Davidson, C. (2004), "Erosion of limestone surfaces caused by wind-driven rain: Numerical modeling", Atmos. Environ., 38(33), 5601-5609. https://doi.org/10.1016/j.atmosenv.2004.06.014
- Theurer, W. (1993), "Dispersion of ground level emissions in complex built-up areas", PhD thesis, University of Karlsruhe.
- Tominaga, Y. and Stathopoulos, T. (2011), "CFD modeling of pollution dispersion in a street canyon: Comparison between les and rans", J. Wind Eng. Ind. Aerod., 99(4), 340-348. https://doi.org/10.1016/j.jweia.2010.12.005
- Wang, K. and Stathopoulos, T. (2007), "Exposure model for wind loading of buildings", J. Wind Eng. Ind. Aerod., 95(9-11), 1511-1525. https://doi.org/10.1016/j.jweia.2007.02.016
- Wieringa, J. (1993), "Representative roughness parameters for homogeneous terrain", Bound. Lay. Meteorol., 63(4), 323-363. https://doi.org/10.1007/BF00705357
- Wright, N. and Hargreaves, D. (2013), Environmental applications of Computational Fluid Dynamics, second edn, John Wiley and Sons.
Cited by
- Integrated tools for improving the resilience of seaports under extreme wind events vol.32, 2017, https://doi.org/10.1016/j.scs.2017.03.022
- An Assessment of the Wind Power Generation Potential of Built Environment Wind Turbine (BEWT) Systems in Fort Beaufort, South Africa vol.10, pp.5, 2018, https://doi.org/10.3390/su10051346
- Characteristics of Zonda wind in South American Andes vol.24, pp.6, 2016, https://doi.org/10.12989/was.2017.24.6.657
- Spatial correlation-based WRF observation-nudging approach in simulating regional wind field vol.28, pp.2, 2016, https://doi.org/10.12989/was.2019.28.2.129
- CFD Methods in Architecture and City Planning vol.1425, pp.None, 2019, https://doi.org/10.1088/1742-6596/1425/1/012124
- Post-Disaster Survey and Analysis of Glass Curtain Wall under Influence of Super Typhoon “Meranti” vol.455, pp.None, 2020, https://doi.org/10.1088/1755-1315/455/1/012044