DOI QR코드

DOI QR Code

A Mathematical model to estimate the wind power using three parameter Weibull distribution

  • Seshaiah, C.V. (Department of Mathematics, Sri Ramakrishna Engineering College) ;
  • Sukkiramathi, K. (Department of Mathematics, Sri Ramakrishna Engineering College)
  • 투고 : 2015.08.09
  • 심사 : 2016.02.11
  • Published : 2016.04.25

Abstract

Weibull distribution is a suitable distribution to use in modeling the life time data. It has been found to be a exact fit for the empirical distribution of the wind speed measurement samples. In brief this paper consist of important properties and characters of Weibull distribution. Also we discuss the application of Weibull distribution to wind speed measurements and derive an expression for the probability distribution of the power produced by a wind turbine at a fixed location, so that the modeling problem reduces to collecting data to estimate the three parameters of the Weibull distribution using Maximum likelihood Method.

Keywords

Acknowledgement

Supported by : Sri Ramakrishna Engineering College

References

  1. Archer, C. and Jacobson, M. (2005), "Evaluation of global wind power", Geophys. Res., 110, D12110. https://doi.org/10.1029/2004JD005462
  2. Chang, T.P. (2011), "Estimation of wind energy potential using different probability density functions", Appl. Energy, 88(5),1848-1856 https://doi.org/10.1016/j.apenergy.2010.11.010
  3. Cook, N.J. (2004), "Confidence limits for extreme wind speeds in mixed climates", J. Wind Eng. Ind. Aerod., 92, 41-51. https://doi.org/10.1016/j.jweia.2003.09.037
  4. D'Amico, G., Petroni, F. and Prattico, F. (2015), "Wind speed prediction for wind farm applications by extreme value theory and copulas", J. Wind Eng. Ind. Aerod., 145, 229-236. https://doi.org/10.1016/j.jweia.2015.06.018
  5. Edwards, P. and Hurst, R. (2001), "Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer", Chaos, 11(3), 611-618. https://doi.org/10.1063/1.1379310
  6. Gasch, R. and Twelve, J. (2012), Wind Power Plants: Fundamentals, Design, Construction, and Oper-Ation, Springer,
  7. Genc, A., Erisoglu, M., Pekgor, A., Oturanc, G. and Hepbasli, A. (2005), "Estimation of wind power potential using weibull distribution", Energ. Source, 27(9), 809-822. https://doi.org/10.1080/00908310490450647
  8. Hong, H.P. and Li, S.H. (2014), "Plotting positions and approximating first two moments of order statistics for Gumbel distribution: estimating quantiles of wind speed", Wind Struct., 19(4), 371-387. https://doi.org/10.12989/was.2014.19.4.371
  9. http://geosci.uchicago.edu/-moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf
  10. Jowder, F.A.L. (2009), "Wind power analysis and site matching of wind turbine generators in kingdom of bahrain", Appl. Energy, 86, 538-545. https://doi.org/10.1016/j.apenergy.2008.08.006
  11. Kollu, R., Rayapudi, S.R., Narasimham, S.V.L. and Pakkurthi, K.M. (2012), "Mixture probability distribution functions to model wind speed distributions", Int. J. Energy Environ. Eng., 27(3).
  12. Lun, I.Y.F. and Lam, J.C. (2000), "A study of Weibull parameters using long term wind observations", Renew. Energ., 20(2),145-153. https://doi.org/10.1016/S0960-1481(99)00103-2
  13. Majid, S., Siamak, K.H. and Mehrdad, B. (2015), "Estimation of Weibull parameters for wind energy application in Iran", Wind Struct., 21(2), 203-221. https://doi.org/10.12989/was.2015.21.2.203
  14. Mo, H.M., Hong, H.P. and Fan, F. (2015), "Estimating the extreme wind speed for regions in china using surface wind observations and real analysis data", J. Wind Eng. Ind. Aerod., 143, 19-33. https://doi.org/10.1016/j.jweia.2015.04.005
  15. Morgan, E.C., Lackner, M., Vogel, R.M. and Baise, L.G. (2011), "Probability distributions for offshore wind speeds", Energ. Convers. Manage., 52, 15-26. https://doi.org/10.1016/j.enconman.2010.06.015
  16. Nelson, W. (1972), "Theory and application of hazard plotting for censored failure data", Technometrics, 114, 945-966.
  17. Shao, J. (2003), Mathematical Statistics (Second Edition), Springer.
  18. Soukissian, T. (2013), "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution", Appl. Energy, 982-1000.
  19. Weibull, W. (1939), "A statistical theory of strength of materials", Ingenious Vetenskaps Akademien Handlingar, 151.
  20. Zhou, J., Erdem, E., Li, G. and Shi, J. (2010), "Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites", Energy Convers. Manage., 51(7), 1449-1458. https://doi.org/10.1016/j.enconman.2010.01.020

Cited by

  1. Mathematical modeling of wind power estimation using multiple parameter Weibull distribution vol.23, pp.4, 2016, https://doi.org/10.12989/was.2016.23.4.351
  2. Prediction of the wind speed probabilities in the atmospheric surface layer vol.132, pp.None, 2016, https://doi.org/10.1016/j.renene.2018.08.060
  3. Towards a digital twin realization of the blade system design study wind turbine blade vol.28, pp.5, 2016, https://doi.org/10.12989/was.2019.28.5.271
  4. The new odd-burr rayleigh distribution for wind speed characterization vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.369
  5. Development of an Algorithm for Prediction of the Wind Speed in Renewable Energy Environments vol.6, pp.12, 2016, https://doi.org/10.3390/fluids6120461