Acknowledgement
Supported by : Sri Ramakrishna Engineering College
References
- Archer, C. and Jacobson, M. (2005), "Evaluation of global wind power", Geophys. Res., 110, D12110. https://doi.org/10.1029/2004JD005462
- Chang, T.P. (2011), "Estimation of wind energy potential using different probability density functions", Appl. Energy, 88(5),1848-1856 https://doi.org/10.1016/j.apenergy.2010.11.010
- Cook, N.J. (2004), "Confidence limits for extreme wind speeds in mixed climates", J. Wind Eng. Ind. Aerod., 92, 41-51. https://doi.org/10.1016/j.jweia.2003.09.037
- D'Amico, G., Petroni, F. and Prattico, F. (2015), "Wind speed prediction for wind farm applications by extreme value theory and copulas", J. Wind Eng. Ind. Aerod., 145, 229-236. https://doi.org/10.1016/j.jweia.2015.06.018
- Edwards, P. and Hurst, R. (2001), "Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer", Chaos, 11(3), 611-618. https://doi.org/10.1063/1.1379310
- Gasch, R. and Twelve, J. (2012), Wind Power Plants: Fundamentals, Design, Construction, and Oper-Ation, Springer,
- Genc, A., Erisoglu, M., Pekgor, A., Oturanc, G. and Hepbasli, A. (2005), "Estimation of wind power potential using weibull distribution", Energ. Source, 27(9), 809-822. https://doi.org/10.1080/00908310490450647
- Hong, H.P. and Li, S.H. (2014), "Plotting positions and approximating first two moments of order statistics for Gumbel distribution: estimating quantiles of wind speed", Wind Struct., 19(4), 371-387. https://doi.org/10.12989/was.2014.19.4.371
- http://geosci.uchicago.edu/-moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf
- Jowder, F.A.L. (2009), "Wind power analysis and site matching of wind turbine generators in kingdom of bahrain", Appl. Energy, 86, 538-545. https://doi.org/10.1016/j.apenergy.2008.08.006
- Kollu, R., Rayapudi, S.R., Narasimham, S.V.L. and Pakkurthi, K.M. (2012), "Mixture probability distribution functions to model wind speed distributions", Int. J. Energy Environ. Eng., 27(3).
- Lun, I.Y.F. and Lam, J.C. (2000), "A study of Weibull parameters using long term wind observations", Renew. Energ., 20(2),145-153. https://doi.org/10.1016/S0960-1481(99)00103-2
- Majid, S., Siamak, K.H. and Mehrdad, B. (2015), "Estimation of Weibull parameters for wind energy application in Iran", Wind Struct., 21(2), 203-221. https://doi.org/10.12989/was.2015.21.2.203
- Mo, H.M., Hong, H.P. and Fan, F. (2015), "Estimating the extreme wind speed for regions in china using surface wind observations and real analysis data", J. Wind Eng. Ind. Aerod., 143, 19-33. https://doi.org/10.1016/j.jweia.2015.04.005
- Morgan, E.C., Lackner, M., Vogel, R.M. and Baise, L.G. (2011), "Probability distributions for offshore wind speeds", Energ. Convers. Manage., 52, 15-26. https://doi.org/10.1016/j.enconman.2010.06.015
- Nelson, W. (1972), "Theory and application of hazard plotting for censored failure data", Technometrics, 114, 945-966.
- Shao, J. (2003), Mathematical Statistics (Second Edition), Springer.
- Soukissian, T. (2013), "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution", Appl. Energy, 982-1000.
- Weibull, W. (1939), "A statistical theory of strength of materials", Ingenious Vetenskaps Akademien Handlingar, 151.
- Zhou, J., Erdem, E., Li, G. and Shi, J. (2010), "Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites", Energy Convers. Manage., 51(7), 1449-1458. https://doi.org/10.1016/j.enconman.2010.01.020
Cited by
- Mathematical modeling of wind power estimation using multiple parameter Weibull distribution vol.23, pp.4, 2016, https://doi.org/10.12989/was.2016.23.4.351
- Prediction of the wind speed probabilities in the atmospheric surface layer vol.132, pp.None, 2016, https://doi.org/10.1016/j.renene.2018.08.060
- Towards a digital twin realization of the blade system design study wind turbine blade vol.28, pp.5, 2016, https://doi.org/10.12989/was.2019.28.5.271
- The new odd-burr rayleigh distribution for wind speed characterization vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.369
- Development of an Algorithm for Prediction of the Wind Speed in Renewable Energy Environments vol.6, pp.12, 2016, https://doi.org/10.3390/fluids6120461