References
- Bastos, L.S. and O'Hagan, A. (2009), "Diagnostics for Gaussian process emulators", Technometrics, 51(4), 425-438. https://doi.org/10.1198/TECH.2009.08019
- Bellman, R. (2003), Dynamic Programming, Dover Publications, Mineola, N.Y.
- Box, G.E.P. and Behnken, D.W. (1960), "Some new three level designs for the study of quantitative variables", Technometrics, 2(4), 455-475. https://doi.org/10.1080/00401706.1960.10489912
- Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978), Statistics for Experimenters : An Introduction to Design, Data Analysis, and Model Building, Wiley, New York.
- Bucher, C. and Most, T. (2008), "A comparison of approximate response functions in structural reliability analysis", Probabilist. Eng. Mech., 23(2-3), 154-163. https://doi.org/10.1016/j.probengmech.2007.12.022
- Bucher, C.G. and Bourgund, U. (1990), "A fast and efficient response-surface approach for structural reliability problems", Struct. Safety, 7(1), 57-66. https://doi.org/10.1016/0167-4730(90)90012-E
- Dette, H. and Pepelyshev, A. (2010), "Generalized latin hypercube design for computer experiments", Technometrics, 52(4), 421-429. https://doi.org/10.1198/TECH.2010.09157
- DiazDelaO, F.A. and Adhikari, S. (2011), "Gaussian process emulators for the stochastic finite element method", Int. J. Numerical Meth. Eng., 87(6), 521-540. https://doi.org/10.1002/nme.3116
- Dubourg, V., Sudret, B. and Deheeger, F. (2013), "Metamodel-based importance sampling for structural reliability analysis", Probabilist. Eng. Mech., 33, 47-57. https://doi.org/10.1016/j.probengmech.2013.02.002
- Fang, K.T., Lin, D.K.J., Winker, P. and Zhang, Y. (2000), "Uniform design: Theory and application", Technometrics, 42(3), 237-248. https://doi.org/10.1080/00401706.2000.10486045
- Forrester, A.I.J. and Keane, A.J. (2009), "Recent advances in surrogate-based optimization", Prog. Aerospace Sci., 45(1-3), 50-79. https://doi.org/10.1016/j.paerosci.2008.11.001
- Forrester, A.I.J., Sobester, A.S. and Keane, A.J. (2008), Engineering Design Via Surrogate Modelling : A Practical Guide, J. Wiley, Chichester, West Sussex, England ; Hoboken, NJ.
- Friedman, J. H. (1991), "Multivariate adaptive regression splines", Annals of Statistics, 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
- Goel, T., Haftka, R.T., Shyy, W. and Watson, L.T. (2008), "Pitfalls of using a single criterion for selecting experimental designs", Int. J. Numer. Meth. Eng., 75(2), 127-155. https://doi.org/10.1002/nme.2242
- Gramacy, R.B. and Lee, H.K.H. (2012), "Cases for the nugget in modeling computer experiments", Statist. Comput., 22(3), 713-722. https://doi.org/10.1007/s11222-010-9224-x
- Hyndman, R.J. and Koehler, A.B. (2006), "Another look at measures of forecast Accuracy", Int. J. Forecast., 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
- Jones, D.R. (2001), "A taxonomy of global optimization methods based on response surfaces", J. Global Optim., 21(4), 345-383. https://doi.org/10.1023/A:1012771025575
- Jones, D.R., Schonlau, M. and Welch, W.J. (1998), "Efficient global optimization of expensive black-box functions", J. Global Optim., 13(4), 455-492. https://doi.org/10.1023/A:1008306431147
- Kennedy, M. C. and O'Hagan, A. (2001), "Bayesian calibration of computer models", J. Roy. Statist. Soc. Series B-Statistical Methodology, 63, 425-450. https://doi.org/10.1111/1467-9868.00294
- Kiefer, J. and Wolfowitz, J. (1959), "Optimum designs in regression problems", Annals Mathematical Statist., 30(2), 271-294. https://doi.org/10.1214/aoms/1177706252
- Kleijnen, J.P.C. and van Beers, W.C.M. (2004), "Application-driven sequential designs for simulation experiments: Kriging metamodelling", J. Operational Res. Soc., 55(8), 876-883. https://doi.org/10.1057/palgrave.jors.2601747
- Krige, D.G. (1994), "A Statistical approach to some basic mine valuation problems on the witwatersrand", J. South African Institute of Mining and Metallurgy, 94(3), 95-111.
- Mckay, M.D., Beckman, R.J. and Conover, W.J. (1979), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometrics, 21(2), 239-245.
- Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007), "Model evaluation guidelines for systematic auantification of accuracy in watershed simulations", Transactions of the Asabe, 50(3), 885-900. https://doi.org/10.13031/2013.23153
- Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R. and Tucker, P.K. (2005), "Surrogate-based analysis and optimization", Prog. Aerospace Sci., 41(1), 1-28. https://doi.org/10.1016/j.paerosci.2005.02.001
- Rougier, J., Sexton, D.M.H., Murphy, J.M. and Stainforth, D. (2009), "Analyzing the climate sensitivity of the Hadsm3 climate model using ensembles from different but related experiments", J. Climate, 22(13), 3540-3557. https://doi.org/10.1175/2008JCLI2533.1
- Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1983), "Design and analysis of computer experiments", Statist. Sci., 4(4), 409-423. https://doi.org/10.1214/ss/1177012413
- Xiong, Y., Chen, W., Apley, D. and Ding, X.R. (2007), "A non-stationary covariance-based kriging method for metamodelling in engineering design", Int. J. Numer. Meth. Eng., 71(6), 733-756. https://doi.org/10.1002/nme.1969
- Ye, K.Q. (1998), "Orthogonal column latin hypercubes and their application in computer experiments", J. American Statistical Association, 93(444), 1430-1439. https://doi.org/10.1080/01621459.1998.10473803
- Zhang, Z., Jiang, C., Han, X., Hu, D. and Yu, S. (2014), "A response surface approach for structural reliability analysis using evidence theory", Adv. Eng. Software, 69, 37-45. https://doi.org/10.1016/j.advengsoft.2013.12.005
Cited by
- The Multiple-Update-Infill Sampling Method Using Minimum Energy Design for Sequential Surrogate Modeling vol.8, pp.4, 2018, https://doi.org/10.3390/app8040481
- Non-probabilistic Integrated Reliability Analysis of Structures with Fuzzy Interval Uncertainties using the Adaptive GPR-RS Method vol.23, pp.9, 2016, https://doi.org/10.1007/s12205-019-1665-y
- Compositional kernel learning using tree-based genetic programming for Gaussian process regression vol.62, pp.3, 2016, https://doi.org/10.1007/s00158-020-02559-7
- Cyclic Feedback Updating Approach and Uncertainty Analysis for the Source Identification of DNAPL-Contaminated Aquifers vol.147, pp.2, 2016, https://doi.org/10.1061/(asce)wr.1943-5452.0001322