Neuroinflammation and Psychiatric Illness

신경염증과 정신질환

  • Song, Hoo Rim (Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital) ;
  • Lee, Hwa-Young (Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital) ;
  • Shim, Se-Hoon (Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital) ;
  • Kwon, Young-Joon (Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital)
  • 송후림 (순천향대학교 의과대학 천안병원 정신건강의학교실) ;
  • 이화영 (순천향대학교 의과대학 천안병원 정신건강의학교실) ;
  • 심세훈 (순천향대학교 의과대학 천안병원 정신건강의학교실) ;
  • 권영준 (순천향대학교 의과대학 천안병원 정신건강의학교실)
  • Received : 2016.01.26
  • Accepted : 2016.02.03
  • Published : 2016.02.29

Abstract

Neuroinflammation is one of important allostatic loads contributory to the various psychiatric illness. It is mediated mainly by glial cells, which produce both proinflammatory and antiinflammatory cytokines, and the balance of them determines the inflammatory process in the central nervous system. S100 calcium-binding protein B, which is used as an inflammatory marker is also released by glial cells. In the molecular level, oxidative stress contributes to the neuroinflammation. Their disturbances have been revealed in the psychiatric illness and related with the dysregulation of the glutamatergic and monoaminergic systems. There is a possibility to use them as disease markers. The approach for inflammation using antiinflammatory drugs and antioxidants could be connected to the development of disease-modifying treatments. Also, a searching examination about specific subtypes who are vulnerable to inflammation in the patients is required to confirm their efficacy clearly.

Keywords

References

  1. Borsook D, Maleki N, Becerra L, McEwen B. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron 2012;73:219-234. https://doi.org/10.1016/j.neuron.2012.01.001
  2. Kesler SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging 2014;35 Suppl 2:S11-S19.
  3. Kelley KW, Bluthe RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, et al. Cytokine-induced sickness behavior. Brain Behav Immun 2003;17 Suppl 1:S112-S118. https://doi.org/10.1016/S0889-1591(02)00077-6
  4. Elsayed M, Magistretti PJ. A new outlook on mental illnesses: glial involvement beyond the glue. Front Cell Neurosci 2015;9:468.
  5. Marques AH, Cizza G, Sternberg E. [Brain-immune interactions and implications in psychiatric disorders]. Rev Bras Psiquiatr 2007; 29 Suppl 1:S27-S32. https://doi.org/10.1590/S1516-44462007000500006
  6. Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, et al. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:1129-1134. https://doi.org/10.1016/j.pnpbp.2004.05.047
  7. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord 2005; 88:167-173. https://doi.org/10.1016/j.jad.2005.07.008
  8. Mandi Y, Vecsei L. The kynurenine system and immunoregulation. J Neural Transm (Vienna) 2012;119:197-209. https://doi.org/10.1007/s00702-011-0681-y
  9. Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 2015;40:134-141. https://doi.org/10.1016/j.semcdb.2015.03.002
  10. Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Traskman-Bendz L, Guillemin GJ, et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun 2015;43:110-117. https://doi.org/10.1016/j.bbi.2014.07.012
  11. Tartar JL, King MA, Devine DP. Glutamate-mediated neuroplasticity in a limbic input to the hypothalamus. Stress 2006;9:13-19. https://doi.org/10.1080/10253890600556481
  12. Schmidt FM, Kirkby KC, Lichtblau N. Inflammation and immune regulation as potential drug targets in antidepressant treatment. Curr Neuropharmacol 2016 Jan 15 [Epub ahead of print]. http://dx.doi.org/10.2174/1570159X14666160115130414.
  13. Liu Y, Ho RC, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-${\alpha}$) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 2012;139:230-239. https://doi.org/10.1016/j.jad.2011.08.003
  14. Janelidze S, Mattei D, Westrin A, Traskman-Bendz L, Brundin L. Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain Behav Immun 2011;25:335-339. https://doi.org/10.1016/j.bbi.2010.10.010
  15. Gananca L, Oquendo MA, Tyrka AR, Cisneros-Trujillo S, Mann JJ, Sublette ME. The role of cytokines in the pathophysiology of suicidal behavior. Psychoneuroendocrinology 2016;63:296-310. https://doi.org/10.1016/j.psyneuen.2015.10.008
  16. Hansen F, Battu CE, Dutra MF, Galland F, Lirio F, Broetto N, et al. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids 2016;48:375-385. https://doi.org/10.1007/s00726-015-2091-1
  17. Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res 2007;85:1373-1380. https://doi.org/10.1002/jnr.21211
  18. Schroeter ML, Abdul-Khaliq H, Krebs M, Diefenbacher A, Blasig IE. Serum markers support disease-specific glial pathology in major depression. J Affect Disord 2008;111:271-280. https://doi.org/10.1016/j.jad.2008.03.005
  19. Rothermundt M, Ahn JN, Jorgens S. S100B in schizophrenia: an update. Gen Physiol Biophys 2009;28 Spec No Focus:F76-F81.
  20. Kalia M, Costa E Silva J. Biomarkers of psychiatric diseases: current status and future prospects. Metabolism 2015;64(3 Suppl 1):S11-S15. https://doi.org/10.1016/j.metabol.2014.10.026
  21. Suchankova P, Klang J, Cavanna C, Holm G, Nilsson S, Jonsson EG, et al. Is the Gly82Ser polymorphism in the RAGE gene relevant to schizophrenia and the personality trait psychoticism? J Psychiatry Neurosci 2012;37:122-128. https://doi.org/10.1503/jpn.110024
  22. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 2015;6:109-120. https://doi.org/10.14336/AD.2014.0305
  23. Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015;27:328-354. https://doi.org/10.1007/s12640-015-9519-y
  24. Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci 2015; 8:77.
  25. Taetzsch T, Block ML. Pesticides, microglial NOX2, and Parkinson's disease. J Biochem Mol Toxicol 2013;27:137-149. https://doi.org/10.1002/jbt.21464
  26. Al-Gubory KH, Garrel C. Sex-specific divergence of antioxidant pathways in fetal brain, liver, and skeletal muscles. Free Radic Res 2016;50:366-373. https://doi.org/10.3109/10715762.2015.1130224
  27. Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Int J Stroke 2016;11:6-18. https://doi.org/10.1177/1747493015607485
  28. Xing G, Chavko M, Zhang LX, Yang S, Post RM. Decreased calcium-dependent constitutive nitric oxide synthase (cNOS) activity in prefrontal cortex in schizophrenia and depression. Schizophr Res 2002;58:21-30. https://doi.org/10.1016/S0920-9964(01)00388-7
  29. Rujescu D, Giegling I, Mandelli L, Schneider B, Hartmann AM, Schnabel A, et al. NOS-I and -III gene variants are differentially associated with facets of suicidal behavior and aggression-related traits. Am J Med Genet B Neuropsychiatr Genet 2008;147B:42-48. https://doi.org/10.1002/ajmg.b.30569
  30. Tuncel OK, Sarisoy G, Bilgici B, Pazvantoglu O, Cetin E, Unverdi E, et al. Oxidative stress in bipolar and schizophrenia patients. Psychiatry Res 2015;228:688-694. https://doi.org/10.1016/j.psychres.2015.04.046
  31. Tsai MC, Huang TL. Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder. Psychiatry Res 2016;235: 38-42. https://doi.org/10.1016/j.psychres.2015.12.005
  32. Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA, et al. Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry 2013;18:10-11. https://doi.org/10.1038/mp.2012.6
  33. Fraunberger EA, Scola G, Laliberte VL, Duong A, Andreazza AC. Redox modulations, antioxidants, and neuropsychiatric disorders. Oxid Med Cell Longev 2016;2016:4729192.
  34. Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev 2015;55:294-321. https://doi.org/10.1016/j.neubiorev.2015.04.015
  35. Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry 2012;83:495-502. https://doi.org/10.1136/jnnp-2011-301779
  36. Kim S, Hwang Y, Webster MJ, Lee D. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry. 2015 Jun 16 [Epub ahead of print]. http://dx.doi.org/10.1038/mp. 2015.79.
  37. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroin flammation and psychiatric illness. J Neuroinflammation 2013;10:43.
  38. Schmidt FM, Kirkby KC, Himmerich H. The TNF-alpha inhibitor etanercept as monotherapy in treatment-resistant depression - report of two cases. Psychiatr Danub 2014;26:288-290.
  39. Krebs M, Leopold K, Hinzpeter A, Schaefer M. Neuroprotective agents in schizophrenia and affective disorders. Expert Opin Pharmacother 2006;7:837-848. https://doi.org/10.1517/14656566.7.7.837
  40. Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 2014; 71:1381-1391. https://doi.org/10.1001/jamapsychiatry.2014.1611
  41. Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog Neuropsychopharmacol Biol Psychiatry 2015;57:11-16. https://doi.org/10.1016/j.pnpbp.2014.10.003
  42. Garcia-Bueno B, Perez-Nievas BG, Leza JC. Is there a role for the nuclear receptor $PPAR{\gamma}$ in neuropsychiatric diseases? Int J Neuropsychopharmacol 2010;13:1411-1429. https://doi.org/10.1017/S1461145710000970
  43. Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 2011;72:1577-1584. https://doi.org/10.4088/JCP.10m06634
  44. Bloch MH, Hannestad J. Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry 2012; 17:1272-1282. https://doi.org/10.1038/mp.2011.100
  45. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, et al. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 2014;9:e96905. https://doi.org/10.1371/journal.pone.0096905
  46. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 2011;36:2452-2459. https://doi.org/10.1038/npp.2011.132
  47. Janssen DG, Caniato RN, Verster JC, Baune BT. A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 2010;25:201-215. https://doi.org/10.1002/hup.1103