DOI QR코드

DOI QR Code

Correlation of Glasgow Prognostic Score or Procalcitonin to Clinical Variables in Patients with Pretreatment Lung Cancer

  • Kim, Young (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Seok, Ji-Yoon (Department of Clinical Pathology, Sorabol College) ;
  • Hyun, Kyung-Yae (Department of Clinical Laboratory Science, College of Nursing & Healthcare Sciences, Dong-Eui University) ;
  • Lee, Gil-Hyun (Department of Clinical Laboratory Science, College of Nursing & Healthcare Sciences, Dong-Eui University) ;
  • Choi, Seok-Cheol (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • Received : 2016.03.22
  • Accepted : 2016.04.02
  • Published : 2016.03.31

Abstract

Unfortunately, the five-year survival rate of lung cancer is relatively low compared with other cancers. Therefore, better predictors are need for prognosis, therapeutic strategy, risk stratification and predicting long-term mortality of lung cancer. Recently, increasing data suggest that Glasgow Prognostic Score (GPS) and procalcitonin levels are useful predictor cancer prognosis. In this study, we retrospectively investigated the correlation of GPS or procalcitonin to clinical variables in patients with pretreatment lung cancer. In 135 patients with pretreatment lung cancer, GPS, procalcitonin, demographic characteristics, hematological, coagulation, biochemical, inflammatory and cardiac markers were measured. Monocyte, eosinophil, basophil, neutrophil to lymphocyte ratio, red cell distribution width (RDW), platelet to lymphocyte ratio, mean platelet volume to platecrit ratio, D-dimer and prothrombin time (PT) levels were higher, whereas mean platelet volume was lower than their normal ranges. Glucose and sodium levels were low, whereas gamma glutamyl transferase (GGT), total bilirubin, creatinine and inorganic phosphorus concentrations were increase compared their normal ranges. Procalcitonin, high sensitivity C-reactive protein and troponin-I concentrations were elevated compared with their normal ranges. GPS had significantly positive or negative relations to cancer stage, hematological, coagulation, biochemical, inflammatory and troponin-I. Based on the data, we suggest that GPS may be a potent and useful predictor for prognosis, therapeutic strategy, risk stratification and predicting long-term mortality of lung cancer.

Keywords

References

  1. Akinbami A, Popoola A, Adediran A, Dosunmu A, Oshinaike O, Adebola P. Full blood count pattern of pre-chemotherapy breast cancer patients in Lagos, Nigeria. Caspian J Intern Med. 2013. 4: 574-579.
  2. Albayrak S, Zengin K, Tanik S, Bakirtas H, Imamoglu A, Gurdal M. Red cell distribution width as a predictor of prostate cancer progression. Asian Pac J Cancer Prev. 2014. 15: 7781-7784. https://doi.org/10.7314/APJCP.2014.15.18.7781
  3. Anthony HM. Blood basophils in lung cancer. Br J Cancer 1982. 45: 209-216. https://doi.org/10.1038/bjc.1982.35
  4. Bick RL. Coagulation abnormalities in malignancy: a review. Semin Thromb Hemost. 1992. 18: 353-372. https://doi.org/10.1055/s-2007-1002575
  5. Cassetta L, Pollard JW. Cancer immunosurveillance: role of patrolling monocytes. Cell Res. 2015. 144: Epub ahead of print.
  6. de Carvalho CC1, Caramujo MJ. Tumour metastasis as an adaptation of tumor cells to fulfill their phosphorus requirements. Med Hypotheses. 2012. 78: 664-667. https://doi.org/10.1016/j.mehy.2012.02.006
  7. Dubernard V, Arbeille BB, Lemesle MB, Legrand C. Evidence for an alpha-granular pool of the cytoskeletal protein alphaactinin in human platelets that redistributes with the adhesive glycoprotein thrombospondin-1 during the exocytotic process. Arterioscler Thromb Vasc Biol. 1997. 17: 2293-305. https://doi.org/10.1161/01.ATV.17.10.2293
  8. Dumache R, Rogobete AF, Bedreag OH. Use of miRNAs as biomarkers in sepsis. Anal Cell Pathol (Amst). 2015. 2015: 186716.
  9. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995. 146: 1029-1039.
  10. Huffnagle GB1, Boyd MB, Street NE, Lipscomb MF. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J Immunol. 1998. 160: 2393-2400.
  11. Kaczka K, Mikosinski S, Fendler W, Celnik A, Pomorski L. Calcitonin and procalcitonin in patients with medullary thyroid cancer or bacterial infection. Adv Clin Exp Med. 2012. 21: 169-178.
  12. Kaplan KL, Broekman MJ, Chernoff A, Lesznik GR, Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization. Blood 1979. 53: 604-618.
  13. Karczmarek-Borowska B, Zielinska K, Bukala A. Hyponatremia in the course of small cell lung cancer-a case report. Pol Merkur Lekarski. 2014. 37: 49-52.
  14. Kemal Y, Yucel I, Ekiz K, Demirag G, Yilmaz B, Teker F. Elevated serum neutrophil to lymphocyte and platelet to lymphocyte ratios could be useful in lung cancer diagnosis. Asian Pac J Cancer Prev. 2014. 15: 2651-2654. https://doi.org/10.7314/APJCP.2014.15.6.2651
  15. Kim KH, Park TY, Lee JY, Lee SM, Yim JJ, Yoo CG. Prognostic significance of initial platelet counts and fibrinogen level in advanced non-small cell lung cancer. J Korean Med Sci. 2014. 29: 507-511. https://doi.org/10.3346/jkms.2014.29.4.507
  16. Kouloulias V, Tolia M, Tsoukalas N, Papaloucas C, Pistevou-Gombaki K, Zygogianni A. Is there any potential clinical impact of serum phosphorus and magnesium in patients with lung cancer at first diagnosis? A multi-institutional study. Asian Pac J Cancer Prev. 2015. 16: 77-81. https://doi.org/10.7314/APJCP.2015.16.1.77
  17. Lee NK, Kim HS. Tumor induces expansion of $FoxP3^{+}CD25^{high}$ and $CD11b^{+}Gr1^{+}$ cell population in the early phase of tumor progression. Biomed Sci Lett. 2015. 21: 172-180. https://doi.org/10.15616/BSL.2015.21.4.172
  18. Liu HH, Guo JB, Geng Y, Su L. Procalcitonin: present and future. Ir J Med Sci. 2015. 184: 597-605. https://doi.org/10.1007/s11845-015-1327-0
  19. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008. 454: 436-444. https://doi.org/10.1038/nature07205
  20. Maruna P, Nedelnikova K, Gurlich R. Physiology and genetics of procalcitonin. Physiol Res. 2000. 49(Suppl 1): S57-S61.
  21. Matzaraki V, Alexandraki KI, Venetsanou K. Evaluation of serum procalcitonin and interleukin-6 levels as markers of liver metastasis. Clin Biochem. 2007. 40: 336-342. https://doi.org/10.1016/j.clinbiochem.2006.10.027
  22. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013. 39: 534-540. https://doi.org/10.1016/j.ctrv.2012.08.003
  23. McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer. 2009. 125: 1298-1305. https://doi.org/10.1002/ijc.24409
  24. Nakayama M, Tabuchi K, Hara A. Clinical utility of the modified Glasgow Prognostic Score in patients with advanced head and neck cancer. Head Neck. 2014. 10: 23-28.
  25. Oncel M, Kiyici A, Oncel M, Sunam GS, Sahin E, Adam B. Evaluation of platelet indices in lung cancer patients. Asn Pac J Cancer Prev. 2015. 6: 7599-702.
  26. Onitilo AA, Kio E, Doi SA. Tumor-related hyponatremia. Clin Med Res. 2007. 5: 228-237. https://doi.org/10.3121/cmr.2007.762
  27. Palmer BF1, Gates JR, Lader M. Causes and management of hyponatremia. Ann Pharmacother. 2003. 37: 1694-1702. https://doi.org/10.1345/aph.1D105
  28. Patel KV, Semba RD, Ferrucci L. Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2010. 65: 258-265.
  29. Patout M, Salaun M, Brunel V, Bota S, Cauliez B, Thiberville L. Diagnostic and prognostic value of serum procalcitonin concentrations in primary lung cancers. Clin Biochem. 2014. 47: 263-267. https://doi.org/10.1016/j.clinbiochem.2014.09.002
  30. Perlstein TS, Weuve J, Pfeffer MA. Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch Intern Med. 2009. 169: 588-594. https://doi.org/10.1001/archinternmed.2009.55
  31. Platz E, Jhund PS, Campbell RT, McMurray JJ. Assessment and prevalence of pulmonary oedema in contemporary acute heart failure trials: a systematic review. Eur J Heart Fail. 2015. 17: 906-916. https://doi.org/10.1002/ejhf.321
  32. Proctor MJ, Horgan PG, Talwar D, Fletcher CD, Morrison DS, McMillan DC. Optimization of the systemic inflammationbased Glasgow prognostic score: a Glasgow inflammation outcome study. Cancer. 2013. 119: 2325-2332. https://doi.org/10.1002/cncr.28018
  33. Qian X, Tuszynski GP. Expression of thrombospondin-1 in cancer: a role in tumor progression. Proc Soc Exp Biol Med. 1996. 212: 199-207. https://doi.org/10.3181/00379727-212-44008
  34. Rast AC, Kutz A, Felder S, Faessler L, Steiner D, Laukemann S, Haubitz S, Huber A, Buergi U, Conca A, Reutlinger B, Mueller B, Bargetzi M, Schuetz P. Procalcitonin improves the Glasgow Prognostic Score for outcome prediction in emergency patients with cancer: a cohort study. Dis Markers 2015. 2015: 795801.
  35. Roxburgh CS, Crozier JE, Maxwell F, Foulis AK, Brown J, McKee RF. Comparison of tumour-based (Petersen Index) and inflammation-based (Glasgow Prognostic Score) scoring systems in patients undergoing curative resection for colon cancer. Br J Cancer 2009. 100: 701-706. https://doi.org/10.1038/sj.bjc.6604926
  36. Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014. 5: 1-14.
  37. Singh PP, Zeng ISL, Srinivasa S. Systematic review and metaanalysis of use of serum C-reactive protein levels to predict anastomotic leak after colorectal surgery. Br J Surg. 2014. 101: 339-346. https://doi.org/10.1002/bjs.9354
  38. Sommer S, Berndt T, Craig T, Kumar R. The phosphatonins and the regulation of phosphate transport and vitamin D metabolism. J Steroid Biochem Mol Biol. 2007. 103: 497-503. https://doi.org/10.1016/j.jsbmb.2006.11.010
  39. Tai CG, Johnson TV, Abbasi A, Herrell L, Harris WB, Kucuk O. External validation of the modified Glasgow prognostic score for renal cancer. Indian J Urol. 2014. 30: 33-37. https://doi.org/10.4103/0970-1591.124203
  40. Tenesa A, Theodoratou E, Din FV, Farrington SM, Cetnarskyj R, Barnetson RA, Porteous ME, Campbell H, Dunlop MG. Ten common genetic variants associated with colorectal cancer risk are not associated with survival after diagnosis. Clin Cancer Res. 2010. 16: 3754-3479. https://doi.org/10.1158/1078-0432.CCR-10-0439
  41. Unal D, Eroglu C, Kurtul N, Oguz A, Tasdemir A. Are neutrophil/lymphocyte and platelet/lymphocyte rates in patients with non-small cell lung cancer associated with treatment response and prognosis? Asian Pac J Cancer Prev. 2013. 14: 5237-5242. https://doi.org/10.7314/APJCP.2013.14.9.5237