A User Sentiment Classification Using Instagram image and text Analysis

인스타그램 이미지와 텍스트 분석을 통한 사용자 감정 분류

  • 홍택은 (조선대학교 소프트웨어융합공학과) ;
  • 김정인 (조선대학교 컴퓨터공학과) ;
  • 신주현 (조선대학교 제어계측로봇공학과)
  • Received : 2015.12.01
  • Accepted : 2016.02.02
  • Published : 2016.03.31

Abstract

According to increasing SNS users and developing smart devices like smart phone and tablet PC recently, many techniques to classify user emotions with social network information are researching briskly. The use emotion classification stands for distinguishing its emotion with text and images listed on his/her SNS. This paper suggests a method to classify user emotions through sampling a value of a representative figure on a trigonometrical function, a representative adjective on text, and a canny algorithm on images. The sampling representative adjective on text is selected as one of high frequency in the samplings and measured values of positive-negative by SentiWordNet. Figures sampled on images are selected as the representative in figures; triangle, quadrangle, and circle as well as classified user emotions by measuring pleasure-unpleased values as a type of figures and inclines. Finally, this is re-defined as x-y graph that represents pleasure-unpleased and positive-negative values with wheel of emotions by Plutchik. Also, we are anticipating for applying user-customized service through classifying user emotions on wheel of emotions by Plutchik that is redefined the representative adjectives and figures.

최근 스마트폰과 태블릿 PC 등의 스마트 기기들의 발전으로 인해 SNS(Social Network Service) 사용자가 증가함에 따라 SNS 정보를 이용한 사용자 감정 분류 방법에 대한 기법들이 활발하게 연구되고 있다. 사용자 감정 분류는 SNS 게시글의 텍스트, 이미지 등을 이용하여 감정을 분류하는 것을 말한다. 본 논문에서는 텍스트에서 대표 형용사를 추출하고 이미지에서 Canny 알고리즘과 삼각함수를 이용해 대표 도형에 대한 값을 추출하여 사용자의 감정을 분류하는 방법을 제안한다. 텍스트에서 추출한 대표 형용사는 텍스트에서 추출한 형용사 중에 빈도수가 가장 높은 형용사로 선정하였으며, 영어 감정어휘 사전인 SentiWordNet을 이용하여 긍정-부정의 수치를 측정했다. 이미지에서 추출되는 도형에서 삼각형, 사각형, 원중에 추출되는 도형을 대표 도형으로 선정했으며, 대표 도형의 종류와 기울기에 따라 쾌-불쾌 수치를 측정하여 사용자의 감정을 분류했다. 최종적으로 Plutchik의 감정 바퀴를 긍정-부정과 쾌-불쾌의 수치를 나타내는 x축과 y축을 갖는 좌표평면으로 재정의하고 대표 형용사와 대표 도형의 값을 재정의한 Plutchik의 감정 바퀴의 좌표 평면에 나타내어 사용자의 감정 분류를 수행한다.

Keywords

References

  1. 박지수, 김무철, 노승민, "멀티미디어 콘텐츠의 맞춤형 정보 제공 연구", 한국전자거래학회지, Vol.20, No3, August 2015, pp.79-87
  2. "표준국어대사전", 국립국어원
  3. 이성식, 전신현, "감정사회학", 한울아카데미, 1995, pp.13
  4. 김묘향, 고한우, 윤종희, "표준 도형에 따른 지역별 시각 감성 평가 : 대전과 대구 지역의 대학생을 중심으로", 한국감성과학회학술지, February 2002, pp. 160-163
  5. 정대현, 한광희, "형태를 통해서 느끼는 감성 - 기본 도형을 중심으로 -", 한국HCI학회논문집, 2007, pp. 445-451
  6. 강인수, "영어 트위터 감성 분석을 위한 SentiWordNet 활용 기법 비교", 한국지능시스템학회논문지, Vol.23, No.4, August 2013, pp. 317-324 https://doi.org/10.5391/JKIIS.2013.23.4.317
  7. 최석재, 권오병, "빅데이터 분석을 위한 한국어 SentiWordNet 개발 방안 연구 : 분노 감정을 중심으로", 한국전자거래학회논문지, Vol19, No.4, Nov 2014, pp. 1-19
  8. 임좌상, 김진만, "한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교", 멀티미디어학회논문지, Vol17, No.2, February 2014, pp.232-239
  9. 노희용, 송기식, 이성주, "SNS정보를 활용한 감성기반 서비스 추천-영화추천 서비스 사례", 한국경영학회 통합학술발표논문집, August 2014, pp380-391
  10. 김경민, 김동윤, 이지형, "트위터를 활용한 감정 기반의 영화 유사도 측정", 한국지능시스템학회 논문지, June 2014, pp.292-297
  11. https://github.com/sachin-handiekar/jInstagram
  12. John Canny, "A computational Approach to Edge Detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, November 1986, pp. 679-698 https://doi.org/10.1109/TPAMI.1986.4767851
  13. itseez, "OpenCV Reference Manual", V2.1, March 2010, pp.293
  14. 최명기, 이지현, "수학사적 관점에서 본 피타고라스 정리의 증명", 대한수학교육학회지, Vol.9, No.4, December 2007, pp523-533
  15. 유재근, "삼각함수 개념의 역사적 분석", 대한수학교육학회지, Vol.24, No.4,, November 2014, pp.607-622
  16. 정대현, 한광희, "형태를 통해서 느끼는 감성 -기본 도형을 중심으로-", 한국HCI학회논문집, 2007, pp. 445-451
  17. Andrea Esuli, and Fabrizio Sebastiani, "SENTIWORDNET: A Publicly Available Lexical Resuource for Opinion Minng", In Proceedings of the 5th Conference on Language Resources and Evaluation, 2006
  18. Stefano Baccianella, Andrea Esuli, Fabrizio Sebastiani, "SentiWordNet 3.0:An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining", Proceeing of the International Conference on Language Resources and Evalution(LREC), 2010
  19. http://nlp.stanford.edu/software/tagger.shtml
  20. R. Plutchik, "Emotions and Life: Perspectives From Psychology, Biology, and Evolution" American psychological Association, 2003